Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 32–35
DOI: https://doi.org/10.17223/2226308X/12/9
(Mi pdma424)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Foundations of Applied Discrete Mathematics

Estimation of local nonlinearity characteristics of vector space transformation iteration using matrix-graph approach

V. M. Fomichevabc, V. M. Bobrova

a National Engineering Physics Institute "MEPhI", Moscow
b Financial University under the Government of the Russian Federation, Moscow
c Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
Full-text PDF (589 kB) Citations (1)
References:
Abstract: To generalize the matrix-graph approach to examination of nonlinearity characteristics of vector spaces transformations proposed by V. M. Fomichev, we propose mathematical tools for local nonlinearity of transformations. Let $G=\left\{0,1,2\right\}$ be multiplicative semigroup where $a0=0$ for each $a\in G$, $ab=\max\left\{a,b\right\}$ for each $a,b\neq0$. Ternary matrix (matrix over $G$) is called $\alpha$-matrix, $\alpha\in\Pi\left(2\right)=\left\{ \left<2c\right>;\left<2s\right>;\left<2sc\right>;\left<2\right> \right\}$, if all its lines ($\left<2s\right>$-matrix), columns ($\left<2c\right>$-matrix) or lines and columns ($\left<2sc\right>$-matrix) contain $2$ or if all its elements are equal to $2$ ($\left<2\right>$-matrix). Set of all ternary matrices $M$ of order $n$ whose $I\!\times\!J$-submatrices are $\alpha$-matrices is denoted $M_{n}^{\alpha} \left( I\!\times\!J \right)$, $I,J\subseteq\left\{1,\dots,n\right\}$. For the set of ternary matrices, multiplication operation is defined. If $A=\left(a_{i,j}\right)$, $B=\left(b_{i,j}\right)$, then $AB=C=\left( c_{i,j}\right) $, where $c_{i,j}=\max\left\{a_{i,1}b_{1,j},\dots,a_{i,n}b_{n,j}\right\}$ and for all $i,j$ multiplication is executed in semigroup $G$. Matrix $M$ is called $I\!\times\!J\text{-}\alpha$-primitive if there is such $\gamma\in\mathbb{N}$ that $M^{t}\in M_{n}^{\alpha}\left(I\!\times\!J\right)$ for all natural $t\ge\gamma$, $\alpha\in\Pi\left(2\right)$. The smallest such $\gamma$ is denoted $I\!\times\!J\text{-}\alpha\text{-exp}M$ and called $I\!\times\!J\text{-}\alpha$-exponent of matrix $M$. There is bijective mapping between the set of ternary matrices of order $n$ and the set of labeled digraphs with $n$ vertices and with elements from $G$ as labels, so the definitions of $I\!\times\!J\text{-}\alpha$-primitivity and $I\!\times\!J\text{-}\alpha$-exponent can be transferred to digraphs. Some sufficient conditions for $I\!\times\!J\text{-}\alpha$-exponent of a matrix to be the smallest its power, raised to which $I\!\times\!J$-submatrix is $\alpha$-matrix, $\alpha\in\Pi\left(2\right)$, have been established. For $I=\left\{i\right\}$, $J=\left\{j\right\}$ upper estimates of $I\!\times\!J\text{-}\alpha$-exponents have been obtained for some classes of labeled digraphs, particularly, for digraph in which a path from $i$ to $j$ goes through primitive component of strong connectivity.
Keywords: matrix-graph approach, ternary matrix, labeled digraph, local nonlinearity, local $\alpha$-exponent.
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. M. Fomichev, V. M. Bobrov, “Estimation of local nonlinearity characteristics of vector space transformation iteration using matrix-graph approach”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 32–35
Citation in format AMSBIB
\Bibitem{FomBob19}
\by V.~M.~Fomichev, V.~M.~Bobrov
\paper Estimation of local nonlinearity characteristics of vector space transformation iteration using matrix-graph approach
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 32--35
\mathnet{http://mi.mathnet.ru/pdma424}
\crossref{https://doi.org/10.17223/2226308X/12/9}
\elib{https://elibrary.ru/item.asp?id=41153855}
Linking options:
  • https://www.mathnet.ru/eng/pdma424
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p32
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :62
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024