Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 106–109
DOI: https://doi.org/10.17223/2226308X/11/33
(Mi pdma415)
 

This article is cited in 2 scientific papers (total in 2 papers)

Applied Theory of Coding, Automata and Graphs

On the number of attractors in finite dynamic systems of complete graphs orientations

A. V. Zharkova

Saratov State University, Saratov
Full-text PDF (620 kB) Citations (2)
References:
Abstract: Finite dynamic systems of complete graphs orientations are considered. The states of such a system $(\Gamma_{K_n},\alpha)$, $n>1$, are all possible orientations of a given complete graph $K_n$, and evolutionary function $\alpha$ transforms a given state (tournament) $\vec G$ by reversing all arcs in $\vec G$ that enter into sinks, and there are no other differences between the given $\vec G$ and the next $\alpha(\vec G)$ states. In this paper, the number of attractors in finite dynamic systems of complete graphs orientations is counted. Namely, in the considered system $(\Gamma_{K_n},\alpha)$, $n>1$, the total number of attractors (basins) is $2^{(n-1)(n-2)/2}(2^{n-1}-n)+(n-1)!$, wherein the number of attractors of length $1$ is $2^{(n-1)(n-2)/2}(2^{n-1}-n)$ and of length $n$ is $(n-1)!$. The corresponding tables are given for the finite dynamic systems of orientations of complete graphs with the number of vertices from two to ten inclusive.
Keywords: attractor, complete graph, evolutionary function, finite dynamic system, graph, graph orientation, tournament.
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: A. V. Zharkova, “On the number of attractors in finite dynamic systems of complete graphs orientations”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 106–109
Citation in format AMSBIB
\Bibitem{Zha18}
\by A.~V.~Zharkova
\paper On the number of attractors in finite dynamic systems of complete graphs orientations
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 106--109
\mathnet{http://mi.mathnet.ru/pdma415}
\crossref{https://doi.org/10.17223/2226308X/11/33}
\elib{https://elibrary.ru/item.asp?id=35557617}
Linking options:
  • https://www.mathnet.ru/eng/pdma415
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p106
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :27
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024