Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 105–106
DOI: https://doi.org/10.17223/2226308X/11/32
(Mi pdma414)
 

Applied Theory of Coding, Automata and Graphs

On codes used in biometrical cryptosystems

A. A. Belousovaa, V. I. Nobelevaa, N. N. Tokarevaba

a Novosibirsk State University, Novosibirsk
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: Problems of using error-correcting codes in biometric cryptosystems are studied. Several constructions of codes with parameters better than parameters of the code from the original biometric cryptosystem of F. Hao, R. Anderson, and J. Daugman (2006) are proposed. A new upper bound for the size of a binary code based on its possibility to correct not more than $t$ errors with probability $1$ and $t+1$ errors with a probability $p$ is proposed. For the cases $t=0,1,2$ we study, it is possible to reach this bound.
Keywords: biometric cryptosystem, linear code, upper bound.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. A. Belousova, V. I. Nobeleva, N. N. Tokareva, “On codes used in biometrical cryptosystems”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 105–106
Citation in format AMSBIB
\Bibitem{BelNobTok18}
\by A.~A.~Belousova, V.~I.~Nobeleva, N.~N.~Tokareva
\paper On codes used in biometrical cryptosystems
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 105--106
\mathnet{http://mi.mathnet.ru/pdma414}
\crossref{https://doi.org/10.17223/2226308X/11/32}
\elib{https://elibrary.ru/item.asp?id=35557616}
Linking options:
  • https://www.mathnet.ru/eng/pdma414
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p105
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024