Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 30–33
DOI: https://doi.org/10.17223/2226308X/11/9
(Mi pdma402)
 

Theoretical Foundations of Applied Discrete Mathematics

Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$

S. A. Novoselov

Immanuel Kant Baltic Federal University, Kaliningrad
References:
Abstract: In this work, we investigate hyperelliptic curves of type shown in the title over the finite field $\mathbb F_q$, $q=p^n$, $p>2$. For the case of $g=3$ or $4$, $p\nmid4g$ and $b$ is a $4g$-root, we provide efficient methods to compute the number of points in the Jacobian of the curve.
Keywords: hyperelliptic curves, Cartier–Manin matrix, Legendre polynomials, point counting.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00244
The reported study was funded by RFBR according to the research project no. 18-31-00244.
Bibliographic databases:
Document Type: Article
UDC: 512.772.7
Language: English
Citation: S. A. Novoselov, “Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 30–33
Citation in format AMSBIB
\Bibitem{Nov18}
\by S.~A.~Novoselov
\paper Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 30--33
\mathnet{http://mi.mathnet.ru/pdma402}
\crossref{https://doi.org/10.17223/2226308X/11/9}
\elib{https://elibrary.ru/item.asp?id=35557592}
Linking options:
  • https://www.mathnet.ru/eng/pdma402
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :52
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024