|
Theoretical Foundations of Applied Discrete Mathematics
Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$
S. A. Novoselov Immanuel Kant Baltic Federal University, Kaliningrad
Abstract:
In this work, we investigate hyperelliptic curves of type shown in the title over the finite field $\mathbb F_q$, $q=p^n$, $p>2$. For the case of $g=3$ or $4$, $p\nmid4g$ and $b$ is a $4g$-root, we provide efficient methods to compute the number of points in the Jacobian of the curve.
Keywords:
hyperelliptic curves, Cartier–Manin matrix, Legendre polynomials, point counting.
Citation:
S. A. Novoselov, “Counting points on hyperelliptic curves of type $y^2=x^{2g+1}+ax^{g+1}+bx$”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 30–33
Linking options:
https://www.mathnet.ru/eng/pdma402 https://www.mathnet.ru/eng/pdma/y2018/i11/p30
|
Statistics & downloads: |
Abstract page: | 152 | Full-text PDF : | 52 | References: | 12 |
|