Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 112–114
DOI: https://doi.org/10.17223/2226308X/11/35
(Mi pdma393)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Theory of Coding, Automata and Graphs

About the maximum number of vertices in primitive regular graphs with exponent 3

I. V. Los, M. B. Abrosimov

Saratov State University, Saratov
Full-text PDF (509 kB) Citations (1)
References:
Abstract: This paper presents some results about the maximum number of vertices in primitive regular graphs with exponent 3. A computational experiment was conducted. We have found the numbers of primitive regular graphs with degree $p\le9$, number of vertices $n\le16$ and exponent 3 for each pair $(n,p)$. We have found the upper bound $n_p$ for the maximum number of vertices in primitive regular graphs with exponent 3 and degree $p$: $n_p\le3(p-1)+2(p-2)(p-1)+(p-2)^2(p+1)$. Also, we have found the exact value of the maximum number of vertices in primitive regular graphs with degree 3 and exponent 3, namely, $n_3=12$.
Keywords: primitive graph, regular graph, the maximum number of vertices.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: I. V. Los, M. B. Abrosimov, “About the maximum number of vertices in primitive regular graphs with exponent 3”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 112–114
Citation in format AMSBIB
\Bibitem{LosAbr18}
\by I.~V.~Los, M.~B.~Abrosimov
\paper About the maximum number of vertices in primitive regular graphs with exponent~3
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 112--114
\mathnet{http://mi.mathnet.ru/pdma393}
\crossref{https://doi.org/10.17223/2226308X/11/35}
\elib{https://elibrary.ru/item.asp?id=35557619}
Linking options:
  • https://www.mathnet.ru/eng/pdma393
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p112
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024