Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 16–20
DOI: https://doi.org/10.17223/2226308X/11/5
(Mi pdma380)
 

Theoretical Foundations of Applied Discrete Mathematics

An improved formula for the universal estimation of digraph exponents

V. M. Fomichevabc

a Financial University under the Government of the Russian Federation, Moscow
b National Engineering Physics Institute "MEPhI", Moscow
c Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
References:
Abstract: An early formula by A. L. Dulmage and N. S. Mendelsohn (1964) for the universal estimation of $n$-vertex primitive digraph exponent is based on a system $\hat C=\{C_1,\dots,C_m\}$ of directed circuits in the graph with lengths $l_1,\dots,l_m$ respectively such that $\mathrm{gcd}(l_1,\dots,l_m)=1$. A new formula is based on a similar circuit system $\hat C$ with $\mathrm{gcd}(l_1,\dots,l_m)=d\geq1$. Also, the new formula uses the values $r_{i,j}^{s/d}(\hat C)$ that are the lengths of the shortest paths from a vertex $i$ to a vertex $j$ going through the circuit system $\hat C$ and having the length comparable to $s$ modulo $d$, $s\in\{0,\dots,d-1\}$. It's shown, that $\exp\Gamma\leq1+\hat F(L(\hat C))+R(\hat C)$ where $\hat F(L)=d\cdot F(l_1/d,\dots,l_m/d)$ and $F(a_1,\dots,a_m)$ is the Frobenius number, $R(\hat C)=\max_{(i,j)}\max_s\{r_{i,j}^{s/d}(\hat C)\}$. For a class of $2k$-vertex primitive digraphs, it is proved that the improved formula gives the value of estimation $2k$, but the early formula gives the value of estimation $3k-2$.
Keywords: Frobenius number, primitive graph, exponent of graph.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00226
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. M. Fomichev, “An improved formula for the universal estimation of digraph exponents”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 16–20
Citation in format AMSBIB
\Bibitem{Fom18}
\by V.~M.~Fomichev
\paper An improved formula for the universal estimation of digraph exponents
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 16--20
\mathnet{http://mi.mathnet.ru/pdma380}
\crossref{https://doi.org/10.17223/2226308X/11/5}
\elib{https://elibrary.ru/item.asp?id=35557588}
Linking options:
  • https://www.mathnet.ru/eng/pdma380
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024