Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 23–25
DOI: https://doi.org/10.17223/2226308X/11/7
(Mi pdma377)
 

Theoretical Foundations of Applied Discrete Mathematics

An extension of Gluskin–Hoszu's and Malyshev's theorems to strong dependent $n$-ary operations

A. V. Cheremushkin

Research Institute "Kvant", Moscow
References:
Abstract: The report presents an extension of Malyshev theorem for $n$-ary quasigroups with a right or left weak inverse property to the case of strong dependent $n$-ary operations on a finite set. The main result is the following theorem. Let $n\ge3$ and a strong dependent $n$-ary function $f$ on a finite set $X$ be such that $f(x_1,\dots,x_n)=g_1(\bar x,h(\bar y,\bar z))=g_2(h(\bar x,\bar y),\bar z)$, for all $(x_1,\dots,x_n)=(\bar x,\bar y,\bar z)\in X^i\times X^{n-i}\times X^i$ and some $g_1,g_2,h$. Then there exist a permutation $\sigma$, a monoid "$\ast$"on $X$ and an automorphism $\theta$ of "$\ast$" such that
$$ \sigma(f(x_1,\dots,x_n))=x_1\ast\theta(x_2)\ast\theta^2(x_3)\ast\dots\ast\theta^{n-1}(x_n), $$
for all $x_i\in X$, $i=1,\dots,n$. As a corollary, the following new proof of Gluskin–Hosszú theorem for strong dependent $n$-ary semigroups is obtained: if a strong dependent $n$-ary operation $[x_1,\dots,x_n]$ admits an identity $[[x_1,\dots,x_n],x_{n+1},\dots,x_{2n-1}]=[x_1,[x_2,\dots,x_{n+1}],x_{n+2},\dots,x_{2n-1}]$, then there exist a monoid "$\ast$" on $X$ and an automorphism $\theta$ of "$\ast$" such that $\theta^{n-1}(x)=a\ast x\ast a^{-1}$, $a\in X$, $\theta(a)=a$, and $[x_1,\dots,x_n]=x_1\ast\theta(x_2)\ast\theta^2(x_3)\ast\dots\ast\theta^{n-2}(x_{n-1})\ast a\ast x_n$ for all $x_i\in X$, $i=1,\dots,n$.
Keywords: $n$-ary group, $n$-ary semigroup, strong dependent operation, weak invertible operation.
Bibliographic databases:
Document Type: Article
UDC: 519.719.1
Language: Russian
Citation: A. V. Cheremushkin, “An extension of Gluskin–Hoszu's and Malyshev's theorems to strong dependent $n$-ary operations”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 23–25
Citation in format AMSBIB
\Bibitem{Che18}
\by A.~V.~Cheremushkin
\paper An extension of Gluskin--Hoszu's and Malyshev's theorems to strong dependent $n$-ary operations
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 23--25
\mathnet{http://mi.mathnet.ru/pdma377}
\crossref{https://doi.org/10.17223/2226308X/11/7}
\elib{https://elibrary.ru/item.asp?id=35557590}
Linking options:
  • https://www.mathnet.ru/eng/pdma377
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :52
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024