Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 102–104
DOI: https://doi.org/10.17223/2226308X/11/31
(Mi pdma373)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Theory of Coding, Automata and Graphs

The criterion of primitivity and exponent bounds for a set of digraphs with common cycles

Y. E. Avezova

National Engineering Physics Institute "MEPhI", Moscow
Full-text PDF (662 kB) Citations (1)
References:
Abstract: In the present paper, we determine criteria of primitivity and bounds on the exponents for sets of digraphs with common cycles. Let $\hat\Gamma=\{\Gamma_1,\dots,\Gamma_p\}$ be a set of digraphs with vertex set $V$ and $U^{(p)}$ be a union of digraphs $\Gamma_1\cup\dots\cup\Gamma_p$ with no multiple arcs, $p>1$. Suppose $\hat C=\{C_1,\dots,C_m\}$ is a set of elementary cycles. This set is called common for $\hat\Gamma$ if every digraph of the set $\hat\Gamma$ contains all the cycles of the set $\hat C$. In the paper, we consider the case when $C_1^*\cup\dots\cup C_m^*=V$ where $C_i^*$ denotes the vertex set of the cycle $C_i$, $i=1,\dots,m$. For a given digraph $\Gamma$, the loop-character index of the semigroup $\langle\Gamma\rangle$ is the smallest integer $h$ such that there is a loop on every vertex of $\Gamma^h$. For $m>1$, the set $\hat\Gamma$ with common cycles set $\hat C$ is primitive if and only if the digraph $U^{(p)}$ is primitive; and if $U^{(p)}$ is primitive, then $\exp\hat\Gamma\leq(2n-1)p+\sum_{\tau=1}^p(F(L_\tau)+d_\tau-l_1^\tau)$ where $L_\tau=\{l_1^\tau,\dots,l_{m(\tau)}^\tau\}$ is the set of all the cycle lengths in $\Gamma_\tau$, ordered so that $l_1^\tau<\dots<l_{m(\tau)}^\tau=n$, $d_\tau=\mathrm{gcd}(L_\tau)$, $L_\tau/d_\tau=\{l_1^\tau/d_\tau,\dots,l_{m(\tau)}^\tau/d_\tau\}$, $F(L_\tau)=d_\tau\Phi(L_\tau/d_\tau)$, $\Phi(L_\tau/d_\tau)$ denotes the Frobenius number, $\tau=1,\dots,p$.
Keywords: Hamiltonian cycle, loop-character index, primitivity of digraphs set, exponent of digraph, exponent of digraphs set.
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: Y. E. Avezova, “The criterion of primitivity and exponent bounds for a set of digraphs with common cycles”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 102–104
Citation in format AMSBIB
\Bibitem{Ave18}
\by Y.~E.~Avezova
\paper The criterion of primitivity and exponent bounds for a~set of digraphs with common cycles
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 102--104
\mathnet{http://mi.mathnet.ru/pdma373}
\crossref{https://doi.org/10.17223/2226308X/11/31}
\elib{https://elibrary.ru/item.asp?id=35557614}
Linking options:
  • https://www.mathnet.ru/eng/pdma373
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p102
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :30
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024