Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 140–142
DOI: https://doi.org/10.17223/2226308X/10/55
(Mi pdma370)
 

Applied Theory of Coding, Automata and Graphs

Identification method for invertible finite state machine with known output function

A. O. Zhukovskaja, V. N. Trenkaev

Tomsk State University, Tomsk
References:
Abstract: This paper presents some simple adaptive identification experiments with a finite state machine (FSM) $A=(X,S,Y,\psi,\varphi)$ taken from an exclusive class of invertible strongly connected deterministic FSM specified by a nondeterministic FSM $R=(X,S,Y,\Psi,\varphi)$ with one or two transition variants. In $R$, a set $S_1$ is a $x/y$-successor of a subset $S_0\subseteq S$ if $S_1=\{s\colon\exists s_0 \in S_0\ (s\in\Psi(x, s_0)\ \&\ \varphi(x,s_0)=y)\}$. A successor graph of the FSM $R$ is an oriented graph constructed in the following way. Each non-empty subset $S_0\subseteq S$ is represented by a node $v(S_0)$ of the graph. A node $v(S_0)$ is an end vertex if $|S_0|\le2$. If a node $v(S_0)$ is not an end vertex, then there exists an edge labelled by $x/y$ from this node to a node $v(S_1)$, where $S_1$ is the $x/y$-successor of $S_0$. A node $v(S_0)$ is decidable if it is an end vertex or there exists $x_0$ such that all edges $x_0/y$ direct to decidable nodes. It is proved that if the node $v(S)$ of the successor graph of the FSM $R$ is decidable, then there exists a simple adaptive homing experiment with $A$. This fact results in the following method for identification of $A$. First, construct the successor graph of $R$ and find the decidable nodes in it. Second, if the node $v(S)$ is decidable, then carry out a simple adaptive homing experiment with $A$. At last, execute an identification experiment with $A$ when the initial state of $A$ is known. Methods for producing homing experiments and identification experiments with the initial FSM of an exclusive class are well known.
Keywords: finite state machines, successor graphs, identification experiments.
Document Type: Article
UDC: 519.713.4
Language: Russian
Citation: A. O. Zhukovskaja, V. N. Trenkaev, “Identification method for invertible finite state machine with known output function”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 140–142
Citation in format AMSBIB
\Bibitem{ZhuTre17}
\by A.~O.~Zhukovskaja, V.~N.~Trenkaev
\paper Identification method for invertible finite state machine with known output function
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 140--142
\mathnet{http://mi.mathnet.ru/pdma370}
\crossref{https://doi.org/10.17223/2226308X/10/55}
Linking options:
  • https://www.mathnet.ru/eng/pdma370
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :48
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024