Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 93–96
DOI: https://doi.org/10.17223/2226308X/10/38
(Mi pdma358)
 

Mathematical Methods of Cryptography

On mathematical models of key mixing for iterative block encryption algorithms

D. A. Romankoa, V. M. Fomichevabcd

a Financial University under the Government of the Russian Federation, Moscow
b National Engineering Physics Institute "MEPhI", Moscow
c Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
d "Security Code", Moscow
References:
Abstract: For a binary symmetric iterative block encryption algorithm $\mathcal A$ with $r$ rounds, the following notation is used: $k$ is a key of $\mathcal A$, $k\in V_l=[\operatorname{GF}(2)]^l$; $x=x_1x_2\dots x_n$ is an information block, $x\in V_n$; $q$ is a round key, $q\in V_\lambda$; $\phi(x,q)$ is the round function; $q_i$ is an $i$-th round key, $i\in\{1,2,\dots,r\}$; $\phi_{q_i}\colon V_n\to V_n$ is the $i$-th round substitution, $\phi_{q_i}(x)=\phi(x,q_i)$; $\Phi_p=\phi_{q_p}\cdot\dots\cdot\phi_{q_1}$ is the $p$-round substitution, $p\in\{1,\dots,r\}$; $\rho$ is the minimal $p$ (if exists) such that every bit in $k$ is an essential argument for the function $\Phi_p$; $p(q_i)$, the exponent of $q_i$, and $p(k)$, the exponent of $k$, are the least $p$ (if exist) such that every coordinate function of $\Phi_p$ essentially depends on each bit in $q_i$ and $k$ respectively; $A$ is a Boolean matrix $(a_{ij})_{n\times n}$, where $a_{ij}=1$ iff $j$-th coordinate function of $\phi(x,q)$ essentially depends on $x_i$, $i\in\{1,\dots,n\}$; matrix $A^t(I*)$ is obtained from $A^t$ by removing rows with the numbers which aren't in a set $I$, $\emptyset\neq I\subseteq\{1,\dots,n\}$; $I*$-$\exp A$ is the (local) $I*$-exponent of $A$, that is, the least integer $\gamma$ (if exists) such that, for any $t\geq\gamma$, the matrix $A^t(I*)$ consists of positive integers; $B_{q_i}$ is the set of numbers of coordinates in $k$ which $q_i$ essentially depends on. Let $B_{q_i}\cap B_{q_j}=\emptyset$ for all $i,j\in\{1,\dots,\rho\}$, $i\neq j$. Then the following statements are true: 1) if $\Phi_r(x,k)$ depends on each bit of $k$, then $p(k)=p(1)+(\rho-1)$ and $p(q_i)=p(1)+(i-1)$, $i=1,\dots,\rho$; 2) if $\{1,\dots,l\}=B_{q_1}\cup\dots\cup B_{q_\rho}$, $n=\lambda$, and $h$ and $h'$ are any substitutions on $V_\lambda$, then $p(k)\geq I*$-$\exp A+(\rho-1)$ for $I=\{1,\dots,n\}$ in case $\phi(x,q)=h(x\oplus q)$ and for $I=\{1\}$ in case $\phi(x,q)=h'((x+q)\mod2^\lambda)$. As a consequence, if $\mathcal A$ is the Feistel algorithm, where $x=x'x''$, $|x'|=|x''|=n/2$, and $\phi(x,q)=(x'',x'\oplus\psi(x'',q))$, then $p(k)\geq I*$-$\exp A+(\rho-1)$ for $I=\{n/2+1,\dots,n\}$ in case $\psi(x'',q)= h(x''\oplus q)$ and for $I=\{n/2+1\}$ in case $\psi(x'',q)=h'((x''+q)\mod2^\lambda)$. Particularly, $p(k)\geq10$ for GOST 28147-89.
Keywords: iterative block encryption algorithm, local exponent, key exponent.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00226
Document Type: Article
UDC: 519.1
Language: Russian
Citation: D. A. Romanko, V. M. Fomichev, “On mathematical models of key mixing for iterative block encryption algorithms”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 93–96
Citation in format AMSBIB
\Bibitem{RomFom17}
\by D.~A.~Romanko, V.~M.~Fomichev
\paper On mathematical models of key mixing for iterative block encryption algorithms
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 93--96
\mathnet{http://mi.mathnet.ru/pdma358}
\crossref{https://doi.org/10.17223/2226308X/10/38}
Linking options:
  • https://www.mathnet.ru/eng/pdma358
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :52
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024