|
Discrete Functions
Lower bounds of dimension of linear codes for CDMA
N. S. Odinokikh Novosibirsk State University, Mechanics and Mathematics Department, Novosibirsk
Abstract:
A linear code of the length $2^n$ is called a saving property bent code (SPB-code) for a bent function $f$ if for any element $a$ of the code, $f(x\oplus a)$ is a bent function. For every bent function from Maiorana–McFarland class with $2n$ variables, there exists SPB-code of the dimension $2^{n+1}-1$. For every bent function with a linearity index $k$, there exists SPB-code of the dimension $2^{k+1}-1$.
Keywords:
linear codes, bent functions, constant-amplitude codes.
Citation:
N. S. Odinokikh, “Lower bounds of dimension of linear codes for CDMA”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 45–46
Linking options:
https://www.mathnet.ru/eng/pdma352 https://www.mathnet.ru/eng/pdma/y2017/i10/p45
|
Statistics & downloads: |
Abstract page: | 121 | Full-text PDF : | 44 | References: | 41 |
|