Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 29–32
DOI: https://doi.org/10.17223/2226308X/10/11
(Mi pdma349)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Foundations of Applied Discrete Mathematics

Hyperelliptic curves, Cartier–Manin matrices and Legendre polynomials

S. A. Novoselov

Immanuel Kant Baltic Federal University, Kaliningrad
Full-text PDF (561 kB) Citations (1)
References:
Abstract: We investigate the hyperelliptic curves of the form $C_1\colon y^2=x^{2g+1}+ax^{g+1}+bx$ and $C_2\colon y^2=x^{2g+2}+ax^{g+1}+b$ over the finite field $\mathbb F_q$, $q=p^n$, $p>2$. We transform these curves to the form $C_{1,\rho}\colon y^2=x^{2g+1}-2\rho x^{g+1}+x$ and $C_{2,\rho}\colon y^2=x^{2g+2}-2\rho x^{g+1}+1$ and prove that the coefficients of corresponding Cartier–Manin matrices are Legendre polynomials. As a consequence, the matrices are centrosymmetric and, therefore, it's enough to compute a half of coefficients to compute the matrix. Moreover, they are equivalent to block-diagonal matrices under transformation of the form $S^{(p)}WS^{-1}$. In the case of $\operatorname{gcd}(p,g)=1$, the matrices are monomial, and we prove that characteristic polynomial of the Frobenius endomorphism $\chi(\lambda)\pmod p$ can be found in factored form in terms of Legendre polynomials by using permutation attached to the monomial matrix. As an application of our results, we list all the possible polynomials $\chi(\lambda)\pmod p$ for the case of $\operatorname{gcd}(p,g)=1$, $g\in\{1,\dots,7\}$ and the curve $C_1$ is over $\mathbb F_p$ or $\mathbb F_{p^2}$.
Keywords: hyperelliptic curve cryptography, Cartier–Manin matrix, Legendre polynomials.
Document Type: Article
UDC: 512.772.7
Language: English
Citation: S. A. Novoselov, “Hyperelliptic curves, Cartier–Manin matrices and Legendre polynomials”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 29–32
Citation in format AMSBIB
\Bibitem{Nov17}
\by S.~A.~Novoselov
\paper Hyperelliptic curves, Cartier--Manin matrices and Legendre polynomials
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 29--32
\mathnet{http://mi.mathnet.ru/pdma349}
\crossref{https://doi.org/10.17223/2226308X/10/11}
Linking options:
  • https://www.mathnet.ru/eng/pdma349
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p29
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :55
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024