Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 121–122
DOI: https://doi.org/10.17223/2226308X/10/46
(Mi pdma348)
 

Mathematical Foundations of Computer Security

Machine learning based anomaly detection method for SQL

A. I. Murzina

Tomsk State Uneversity, Department of Informatics, Tomsk
References:
Abstract: In this paper, an anomaly detection method for SQL is proposed. The method is based on the clasterization and recurrent neural networks for legitimate SQL-queries. The main idea is to teach neural network to detect non-typical SQL-queries for the server including queries independent from known instances of successful attacks.
Keywords: machine learning, anomaly detection, SQL-injections, clasterization, recurrent neural network.
Document Type: Article
UDC: 004.94
Language: Russian
Citation: A. I. Murzina, “Machine learning based anomaly detection method for SQL”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 121–122
Citation in format AMSBIB
\Bibitem{Mur17}
\by A.~I.~Murzina
\paper Machine learning based anomaly detection method for SQL
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 121--122
\mathnet{http://mi.mathnet.ru/pdma348}
\crossref{https://doi.org/10.17223/2226308X/10/46}
Linking options:
  • https://www.mathnet.ru/eng/pdma348
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :169
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024