Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 44–45
DOI: https://doi.org/10.17223/2226308X/10/18
(Mi pdma346)
 

Discrete Functions

Permutation binomials over finite fields. Conditions of existence

A. V. Miloserdov

Novosibirsk State University, Mechanics and Mathematics Department, Novosibirsk
References:
Abstract: Let $1\leq j<i\leq 2^n-1$, $1\leq k\leq2^n- 1$, $\alpha$ is a primitive element of the field $\mathbb F_{2^n}$. It is proved that: 1) if a function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(y)=\alpha^ky^i+y^j$ is one-to-one function, then $\operatorname{gcd}(i-j,2^n-1)$ doesn't divide $\operatorname{gcd}(k,2^n-1)$; 2) if $2^n-1$ is prime, then one-to-one function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(x)=\alpha^kx^i+x^j$ doesn't exist; 3) if $n$ is a composite number, then there is one-to-one function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(x)=\alpha^kx^i+x^j$; 4) if $2^n-1$ has a divisor $d<\frac n{2\log_2(n)}-1$, then there is one-to-one function $f\colon\mathbb F_{2^n}\to\mathbb F_{2^n}$ of the form $f(y)=ay^i+y^j$ for some $a\in\mathbb F^*_{2^n}$, $0<j<i<2^n-1$.
Keywords: polynomial representation, permutation polynomials, permutation binomials.
Funding agency Grant number
Russian Foundation for Basic Research 17-41-543364
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. V. Miloserdov, “Permutation binomials over finite fields. Conditions of existence”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 44–45
Citation in format AMSBIB
\Bibitem{Mil17}
\by A.~V.~Miloserdov
\paper Permutation binomials over finite fields. Conditions of existence
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 44--45
\mathnet{http://mi.mathnet.ru/pdma346}
\crossref{https://doi.org/10.17223/2226308X/10/18}
Linking options:
  • https://www.mathnet.ru/eng/pdma346
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :35
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024