Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 87–89
DOI: https://doi.org/10.17223/2226308X/10/35
(Mi pdma343)
 

Mathematical Methods of Cryptography

Structure of local primitive digraphs

S. N. Kyazhinab

a National Engineering Physics Institute "MEPhI", Moscow
b MD RF, Moscow
References:
Abstract: For vertices $i$ and $j$ in a digraph $\Gamma$, this digraph is said to be $i\times j$-primitive if there exists an integer $\gamma$ such that, for any $t\geq\gamma$, there is a path in $\Gamma$ of length $t$ from $i$ to $j$; in this case, the least $\gamma$ is called $i\times j$-exponent of $\Gamma$. The properties of the $i\times j$-primitive digraph $\Gamma$ structure, used for calculation of the digraph $i\times j$-exponent, are investigated. It is shown that $i\times j$-primitive digraph $\Gamma$ is strongly connected or the strongly connected components in it are connected to each other with the some simple paths in which all the vertices except, perhaps, initial and final ones are acyclic. The set of these components is divided into $k+1$ levels according to the distance from vertex $i$, namely the $0$-th level contains the strongly connected component with $i$, the $k$-th level contains the strongly connected component with $j$, the $t$-th level contains the strongly connected components which don't belong to the previous $t-1$ levels and are connected with some components on $(t-1)$-th level, $t=1,\dots,k-1$. Also, it is shown that, for the transformation of the state set of the cryptographic alternating step generator constructed on the base of linear feedback shift registers of lengths $n,m$ and $r$, the $i\times j$-primitive mixing digraph, for each $i\in\{1,\dots,m\}$ and $j\in\{m+n,m+n+r\}$, consists of three strongly connected components divided into two levels.
Keywords: local primitive digraph, strongly connected component, mixing graph, alternating step generator.
Document Type: Article
UDC: 519.17
Language: Russian
Citation: S. N. Kyazhin, “Structure of local primitive digraphs”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 87–89
Citation in format AMSBIB
\Bibitem{Kya17}
\by S.~N.~Kyazhin
\paper Structure of local primitive digraphs
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 87--89
\mathnet{http://mi.mathnet.ru/pdma343}
\crossref{https://doi.org/10.17223/2226308X/10/35}
Linking options:
  • https://www.mathnet.ru/eng/pdma343
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :52
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024