Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 84–87
DOI: https://doi.org/10.17223/2226308X/10/34
(Mi pdma339)
 

Mathematical Methods of Cryptography

Exponents of mixing digraphs associated with one and two feedbacks shift registers

A. M. Korenevaab

a National Engineering Physics Institute "MEPhI", Moscow
b "Security Code", Moscow
References:
Abstract: Let $n>k\ge1$, $r>1$. Denote by $\operatorname{MAG}(n,r,k)$ a set of modified additive generators based on $k$-feedback shift registers of a length $n$ over the set $V_r$ of all the binary vectors of a length $r$. Let $g$ and $\mu$ be some permutations on $V_r$, $g$ modifies the feedback of a register in $\operatorname{MAG}(n,r,1)$, $g$ and $\mu$ modify feedbacks of a register in $\operatorname{MAG}(n,r,2)$. Let $\varphi^g$ and $\varphi^{g,\mu}$ be transformations of the vector space $(V_r)^n$ produced by these registers respectively, and $\Gamma(\varphi^g)$ and $\Gamma(\varphi^{g,\mu})$ be mixing digraphs associated with $\varphi^g$ and $\varphi^{g,\mu}$. This paper presents some results of analysing the exponent estimations for $\Gamma(\varphi^g)$ and $\Gamma(\varphi^{g,\mu})$. The value $\zeta=\exp\Gamma(\varphi^g)-\exp\Gamma(\varphi^{g,\mu})$ is positive for a large number of parameter values. It is shown that $\zeta\le\exp\Gamma(\varphi^g)/2$. The smallest value of $\exp\Gamma(\varphi^g)$ equals $n+1$ and the smallest value of $\exp\Gamma(\varphi^{g,\mu})$ equals $\lceil n/2\rceil+1$. This means that mixing properties of $\varphi^{g,\mu}$ can be improved up to 2 times compared to mixing properties of $\varphi^g$.
Keywords: mixing properties, modified additive generator, feedback shift register, exponent of digraph.
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. M. Koreneva, “Exponents of mixing digraphs associated with one and two feedbacks shift registers”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 84–87
Citation in format AMSBIB
\Bibitem{Kor17}
\by A.~M.~Koreneva
\paper Exponents of mixing digraphs associated with one and two feedbacks shift registers
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 84--87
\mathnet{http://mi.mathnet.ru/pdma339}
\crossref{https://doi.org/10.17223/2226308X/10/34}
Linking options:
  • https://www.mathnet.ru/eng/pdma339
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :41
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024