Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 41–42
DOI: https://doi.org/10.17223/2226308X/10/16
(Mi pdma338)
 

Discrete Functions

A bent function construction by a bent function that is affine on several cosets of a linear subspace

N. A. Kolomeec

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: A construction of bent functions by a given bent function is introduced. Let $f$ be a bent function in $2k$ variables and, for some $w\in\mathbb F_2^{2k}$, the bent function $f(x)\oplus\langle w,x\rangle$ is constant on each of distinct cosets $C_1,\dots,C_{2^{2k-2t}}$ of some $t$-dimensional linear subspace of $\mathbb F_2^{2k}$, where $0\leq t\leq k$. Then $f \oplus\operatorname{Ind}_{C_1\cup\dots\cup C_{2^{2k - 2t}}}$ is a bent function too. This is a generalization of the construction of bent functions at the minimal possible Hamming distance from a given bent function. For $t=2$ and for a quadratic bent function $f$, a simplification of the construction is done. It is proved that the construction generates not more than $2^t\prod_{i=0}^{t-1}{(2^{2k-2i}-1)/(2^{t-i}-1})$ bent functions for an arbitrary bent function $f$ and a fixed $t$. For $t\geq2$, the bound is attainable if and only if $f$ is quadratic.
Keywords: Boolean functions, bent functions, the minimal distance, affinity.
Funding agency Grant number
Russian Foundation for Basic Research 15-07-01328
Document Type: Article
UDC: 519.7
Language: Russian
Citation: N. A. Kolomeec, “A bent function construction by a bent function that is affine on several cosets of a linear subspace”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 41–42
Citation in format AMSBIB
\Bibitem{Kol17}
\by N.~A.~Kolomeec
\paper A bent function construction by a~bent function that is affine on several cosets of a~linear subspace
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 41--42
\mathnet{http://mi.mathnet.ru/pdma338}
\crossref{https://doi.org/10.17223/2226308X/10/16}
Linking options:
  • https://www.mathnet.ru/eng/pdma338
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024