Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 14–16
DOI: https://doi.org/10.17223/2226308X/10/4
(Mi pdma334)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Foundations of Applied Discrete Mathematics

On primitivity of mixing digraphs for substitutions of shift registers

V. S. Grigorievab, V. M. Fomichevacde

a Financial University under the Government of the Russian Federation, Moscow
b "Positive Technologies", Moscow
c National Engineering Physics Institute "MEPhI", Moscow
d Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
e "Security Code", Moscow
Full-text PDF (545 kB) Citations (1)
References:
Abstract: Let $g$ and $h$ be substitutions defined by binary feedback left- and right-shift registers $R_l$ and $R_r$ respectively on their sets of states, $n$ be the length of each of these registers, $f_l=x_1\oplus\phi(x_2,\dots,x_n)$ and $f_r=x_n\oplus\psi(x_1,\dots,x_{n-1})$ be the feedback functions of $R_l$ and $R_r$ respectively, and $i_1,\dots,i_m$ be the numbers of the register stages which are the inputs of the feedback in $R_l$, $1=i_1<i_2<\dots<i_m\leq n$. So $x_{i_1},\dots,x_{i_m}$ are all essential variables of the function $f_l$. Let $G(s)$ be a mixing digraph for a substitution $s\in\{g,h,gh,hg\}$. We prove the following statements: 1) suppose, $g^{-1}=h$, then $G(g)$ is primitive iff $G(g^{-1})$ is primitive; in this case, $\exp G(g)=\exp G(g^{-1})$ if $i_k+i_{m+2-k}=n+2$ for all $k\in\{2,\dots,m\}$; 2) the set of arcs in $G(gh)$ consists of $n$ loops (one at each vertex) and arcs $(i,n)$, $i\in\{1,\dots,n-1\}$, such that $x_i$ is an essential variable of the function $\psi(x_1,\dots,x_{n-1})\oplus\phi(x_1,\dots,x_{n-1})$; 3) the set of arcs in $G(hg)$ consists of $n$ loops (one at each vertex) and arcs $(i,1)$, $i\in\{2,\dots,n\}$, such that $x_i$ is an essential variable of the function $\psi(x_2,\dots,x_n)\oplus\phi(x_2,\dots,x_n)$; 4) suppose, $h$ is a triangular substitution on $\{0,1\}^n$ and $G(g)$ is primitive; then the digraphs $G(g)\cdot G(h)$ and $G(h)\cdot G(g)$ are also primitive; in this case the exponent of each of these digraphs does not exceed $\exp G(g)$.
Keywords: mixing digraph, primitive digraph, exponent of graph, shift register, triangle transformation.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00226
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. S. Grigoriev, V. M. Fomichev, “On primitivity of mixing digraphs for substitutions of shift registers”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 14–16
Citation in format AMSBIB
\Bibitem{GriFom17}
\by V.~S.~Grigoriev, V.~M.~Fomichev
\paper On primitivity of mixing digraphs for substitutions of shift registers
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 14--16
\mathnet{http://mi.mathnet.ru/pdma334}
\crossref{https://doi.org/10.17223/2226308X/10/4}
Linking options:
  • https://www.mathnet.ru/eng/pdma334
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :73
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024