Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2017, Issue 10, Pages 35–36
DOI: https://doi.org/10.17223/2226308X/10/13
(Mi pdma330)
 

Discrete Functions

A classification of differentially nonequivalent quadratic APN function in 5 and 6 variables

A. A. Gorodilovaab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk
References:
Abstract: A vector Boolean function $F$ from $\mathbb F_2^n$ to $\mathbb F_2^n$ is called almost perfect nonlinear (APN) if equation $F(x)\oplus F(x\oplus a)=b$ has at most 2 solutions for all vectors $a,b\in\mathbb F_2^n$, where $a$ is non-zero. Two functions $F$ and $G$ are called differentially equivalent if $B_a(F)=B_a(G)$ for all $a\in\mathbb F_2^n$, where $B_a(F)=\{F(x)\oplus F(x\oplus a)\colon x\in\mathbb F_2^n\}$. A classification of differentially non-equivalent quadratic APN function in 5 and 6 variables is obtained. We prove that, for a quadratic APN function $F$ in $n$ variables, $n\leqslant6$, all differentially equivalent to $F$ quadratic functions are represented as $F\oplus A$, where $A$ is an affine function.
Keywords: APN functions, differential equivalence, linear spectrum.
Funding agency Grant number
Russian Foundation for Basic Research 17-41-543364
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. A. Gorodilova, “A classification of differentially nonequivalent quadratic APN function in 5 and 6 variables”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 35–36
Citation in format AMSBIB
\Bibitem{Gor17}
\by A.~A.~Gorodilova
\paper A classification of differentially nonequivalent quadratic APN function in~5 and~6 variables
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 35--36
\mathnet{http://mi.mathnet.ru/pdma330}
\crossref{https://doi.org/10.17223/2226308X/10/13}
Linking options:
  • https://www.mathnet.ru/eng/pdma330
  • https://www.mathnet.ru/eng/pdma/y2017/i10/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :52
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024