Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2012, Issue 5, Pages 84–86 (Mi pdma32)  

This article is cited in 1 scientific paper (total in 1 paper)

Applied graph theory

On the number of minimal vertex and edge $1$-extensions of cycles

M. B. Abrosimov, N. A. Kuznetsov

Saratov State University, Saratov
Full-text PDF (414 kB) Citations (1)
References:
Abstract: For a given graph $G$ with $n$ nodes, we say that graph $G^*$ is its vertex extension if for each vertex $v$ of $G^*$ the subgraph $G^*-v$ contains graph $G$ up to isomorphism. A graph $G^*$ is a minimal vertex extension of the graph $G$ if $G^*$ has $n+1$ nodes and there is no vertex extension with $n+1$ nodes of $G$ having fewer edges than $G^*$. A graph $G^*$ is edge extension of graph $G$ with $n$ nodes if every graph obtained by removing any edge from $G^*$ contains $G$. Edge extension of graph $G$ with $n$ vertices is called minimal if among all edge extensions of graph $G$ with $n$ vertices it has the minimum possible number of edges. We present the results of computational experiment in which all minimal vertex and edge extensions of cycles up to 17 vertices were found.
Document Type: Article
UDC: 519.17
Language: Russian
Citation: M. B. Abrosimov, N. A. Kuznetsov, “On the number of minimal vertex and edge $1$-extensions of cycles”, Prikl. Diskr. Mat. Suppl., 2012, no. 5, 84–86
Citation in format AMSBIB
\Bibitem{AbrKuz12}
\by M.~B.~Abrosimov, N.~A.~Kuznetsov
\paper On the number of minimal vertex and edge $1$-extensions of cycles
\jour Prikl. Diskr. Mat. Suppl.
\yr 2012
\issue 5
\pages 84--86
\mathnet{http://mi.mathnet.ru/pdma32}
Linking options:
  • https://www.mathnet.ru/eng/pdma32
  • https://www.mathnet.ru/eng/pdma/y2012/i5/p84
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025