|
Theoretical Foundations of Applied Discrete Mathematics
Generalized 312-avoiding GS-permutations and Lehmer's transformation
L. N. Bondarenkoa, M. L. Sharapovab a Moscow Vitte University, Sergiev Posad Branch, Sergiev Posad, Moscow region
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow
Abstract:
Lehmer's transformation of the GS-permutations introduced by I. Gessel and R. Stanley is considered. It is proved that the iteration of Lehmer's transformation of all GS-permutations of order $r\geq1$ leads to the set of all 312-avoiding GS-permutations of order $r$ and thus gives new characterization of these permutations. It is shown that the statistics $\mathrm{rise}$ and $\mathrm{imal}$ on the set of the 312-avoiding GS-permutations of order $r$ have the same distribution. A simple relation connecting the inverses of the generating function of the Narayana polynomials of order $r$ and the exponential generating function of Euler's polynomials of order $r$ is found.
Keywords:
GS-permutations, Lehmer's transformation, 312-avoiding GS-permutations, statistics $\mathrm{rise}$ and $\mathrm{imal}$, Euler's polynomials, Narayana polynomials, generating function, inverse function.
Citation:
L. N. Bondarenko, M. L. Sharapova, “Generalized 312-avoiding GS-permutations and Lehmer's transformation”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 7–9
Linking options:
https://www.mathnet.ru/eng/pdma315 https://www.mathnet.ru/eng/pdma/y2017/i10/p7
|
|