Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2015, Issue 8, Pages 115–117
DOI: https://doi.org/10.17223/2226308X/8/44
(Mi pdma253)
 

Applied Theory of Coding, Automata and Graphs

On number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations

A. V. Zharkova

Saratov State University, Saratov
References:
Abstract: Finite dynamic systems of binary vectors associated with palms orientations are considered. A palm is a tree which is a union of paths having a common end vertex and all these paths, except perhaps one, have the length 1. States of a dynamic system $(P_{s+c},\gamma)$, $s>0$, $c>1$, are all possible orientations of a palm with trunk length $s$ and leafs number $c$, and evolutionary function transforms a given palm orientation by reversing all arcs that enter into sinks. This dynamic system is isomorphic to finite dynamic system ($B^{s+c}$, $\gamma$), $s>0$, $c>1$, where states of this system are all possible binary vectors of dimension $s+c$. Let $v=v_1\dots v_s.v_{s+1}\dots v_{s+c}\in B^{s+c}$, then $\gamma(v)=v'$ where $v'$ is obtained by simultaneous application of the following rules: 1) if $v_1=0$, then $v'_1=1$; 2) if $v_i=1$ and $v_{i+1}=0$ for some $i$ where $0<i<s$, then $v'_i=0$ and $v'_{i+1}=1$; 3) if $v_i=1$ for some $i$ where $s<i\leq s+c$, then $v'_i=0$; 4) if $v_s=1$ and $v_i=0$ for all $i$ where $s<i\leq s+c$, then $v'_s=0$ and $v'_i=1$ for all $i$, $s<i\leq s+c$; 5) there are no other differences between $v$ and $\gamma(v)$. A formula for counting the number of inaccessible states in the considered dynamic systems is proposed. The table with the number of inaccessible states in systems $(B^{8+c},\gamma)$ for $1<c<9$ is given.
Keywords: finite dynamic system, inaccessible state, palm, starlike tree.
Document Type: Article
UDC: 519.1
Language: Russian
Citation: A. V. Zharkova, “On number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations”, Prikl. Diskr. Mat. Suppl., 2015, no. 8, 115–117
Citation in format AMSBIB
\Bibitem{Zha15}
\by A.~V.~Zharkova
\paper On number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations
\jour Prikl. Diskr. Mat. Suppl.
\yr 2015
\issue 8
\pages 115--117
\mathnet{http://mi.mathnet.ru/pdma253}
\crossref{https://doi.org/10.17223/2226308X/8/44}
Linking options:
  • https://www.mathnet.ru/eng/pdma253
  • https://www.mathnet.ru/eng/pdma/y2015/i8/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :45
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024