|
Prikladnaya Diskretnaya Matematika. Supplement, 2012, Issue 5, Pages 14–15
(Mi pdma25)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Theoretical Foundations of Applied Discrete Mathematics
Statistical independence of the Boolean function superposition. II
O. L. Kolchevaa, I. A. Pankratovab a Tomsk State University, Tomsk
b Tomsk State University, Tomsk
Abstract:
Let $x,y,z$ be sets of different Boolean variables, $f(x,y)$, $f_1(x,y)$, $f_2(x,y)$, $f_1(x,y)\oplus f_2(x,y)$ are Boolean functions being statistically independent on the variables in $x$, and $h(x_1,x_2,z)$, $g(x)$ are any Boolean functions. Then the function $h(f_1(x,y),f_2(x,y),z)$ is statistically independent on the variables in $x$; and the same is true for the function $f(x,y)\oplus g(x)$ iff $f$ is balanced or $g=\mathrm{const}$.
Citation:
O. L. Kolcheva, I. A. Pankratova, “Statistical independence of the Boolean function superposition. II”, Prikl. Diskr. Mat. Suppl., 2012, no. 5, 14–15
Linking options:
https://www.mathnet.ru/eng/pdma25 https://www.mathnet.ru/eng/pdma/y2012/i5/p14
|
Statistics & downloads: |
Abstract page: | 232 | Full-text PDF : | 79 | References: | 52 |
|