Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2015, Issue 8, Pages 17–19
DOI: https://doi.org/10.17223/2226308X/8/6
(Mi pdma237)
 

This article is cited in 2 scientific papers (total in 2 papers)

Theoretical Foundations of Applied Discrete Mathematics

$\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Criptography of Russia, Moscow
b National Engineering Physics Institute "MEPhI", Moscow
Full-text PDF (557 kB) Citations (2)
References:
Abstract: Let $X$ be an alphabet of plaintexts (ciphertexts) of iterated block ciphers and $(X,\otimes)$ be a regular abelian group. The group operation $\otimes$ defines the difference of a text pair. $\otimes$-Markov ciphers are defined as iterated ciphers of which round functions satisfy the condition that the differential probability is independent of the choice of plaintexts from $X$. For $\otimes$-Markov ciphers with independent round keys, the sequence of round differences forms a Markov chain. In this paper, we consider $\otimes$-Markov ciphers and a partition $\mathbf W=\{W_0,\dots,W_{r-1}\}$ with blocks being lumped states of the Markov chain. An $l$-round $\otimes$-Markov cipher is called $\otimes_{\mathbf W,\mathrm{ch}}$-markovian if the cipher and $\mathbf W$ satisfy the following condition: the block numbers sequence $j_0,\dots,j_l$ such that, for all $i\in\{0,\dots,l\}$, the $i^{th}$-round difference belongs to $W_{j_i}$ is a Markov chain. This definition can be also extended for permutations on $X$. For a partition $\mathbf W$ and differential probabilities of a round function of an $l$-round $\otimes$-Markov cipher, we get conditions that the cipher is $\otimes_{\mathbf W,\mathrm{ch}}$-markovian. We describe $\otimes_{\mathbf W,\mathrm{ch}}$-markovian permutations on $\mathbb Z_n$ based on an exponential operation and a logarithmic operation, which are defined on $\mathbb Z_n$ and $\mathrm{GF}(n+1)$.
Keywords: Markov block cipher, Markov chain, truncated differential technique, exponential transformation.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: B. A. Pogorelov, M. A. Pudovkina, “$\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations”, Prikl. Diskr. Mat. Suppl., 2015, no. 8, 17–19
Citation in format AMSBIB
\Bibitem{PogPud15}
\by B.~A.~Pogorelov, M.~A.~Pudovkina
\paper $\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations
\jour Prikl. Diskr. Mat. Suppl.
\yr 2015
\issue 8
\pages 17--19
\mathnet{http://mi.mathnet.ru/pdma237}
\crossref{https://doi.org/10.17223/2226308X/8/6}
Linking options:
  • https://www.mathnet.ru/eng/pdma237
  • https://www.mathnet.ru/eng/pdma/y2015/i8/p17
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :50
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024