Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2015, Issue 8, Pages 117–120
DOI: https://doi.org/10.17223/2226308X/8/45
(Mi pdma227)
 

This article is cited in 2 scientific papers (total in 2 papers)

Applied Theory of Coding, Automata and Graphs

Perfect binary codes of infinite length

S. A. Malyugin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (619 kB) Citations (2)
References:
Abstract: A subset $C$ of the infinite-dimensional Boolean cube $\{0,1\}^\mathbb N$ is called a perfect binary code with distance 3 if all balls of radius 1 (in the Hamming metric) with centres in $C$ are pairwise disjoint and their union covers the cube $\{0,1\}^\mathbb N$. A perfect binary code in the zero layer $\{0,1\}^\mathbb N_0$, consisting of all vectors of the cube $\{0,1\}^\mathbb N$ having finite supports, is defined similarly. It is proved that the cardinality of the set of all equivalence classes of perfect binary codes in the zero layer $\{0,1\}^\mathbb N_0$ is continuum. At the same time, the cardinality of the set of all equivalence classes of perfect binary codes in the whole cube $\{0,1\}^\mathbb N$ is hypercontinuum.
Keywords: perfect binary codes, Hamming code, Hamming distance, Vasil'ev codes, equivalence classes, continuum, hypercontinuum.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: S. A. Malyugin, “Perfect binary codes of infinite length”, Prikl. Diskr. Mat. Suppl., 2015, no. 8, 117–120
Citation in format AMSBIB
\Bibitem{Mal15}
\by S.~A.~Malyugin
\paper Perfect binary codes of infinite length
\jour Prikl. Diskr. Mat. Suppl.
\yr 2015
\issue 8
\pages 117--120
\mathnet{http://mi.mathnet.ru/pdma227}
\crossref{https://doi.org/10.17223/2226308X/8/45}
Linking options:
  • https://www.mathnet.ru/eng/pdma227
  • https://www.mathnet.ru/eng/pdma/y2015/i8/p117
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :104
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024