Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2014, Issue 7, Pages 36–37 (Mi pdma181)  

This article is cited in 3 scientific papers (total in 3 papers)

Theoretical Foundations of Applied Discrete Mathematics

Vectorial Boolean functions on distance one from APN functions

G. I. Shushuev

Faculty of Mechanics and Mathematics, Novosibirsk State University, Novosibirsk
Full-text PDF (542 kB) Citations (3)
References:
Abstract: The metric properties of the class of vectorial Boolean functions are studied. A vectorial Boolean function $F$ in $n$ variables is called a differential $\delta$-uniform function if the equation $F(x)\oplus F(x\oplus a)=b$ has at most $\delta$ solutions for any vectors $a,b$, where $a\neq0$. In particular, if it is true for $\delta=2$, then the function $f$ is called APN. The distance between vectorial Boolean functions $F$ and $G$ is the cardinality of the set $\{x\in\mathbb Z_2^n\colon F(x)\neq G(x)\}$. It is proved that there are only differential $4$-uniform functions which are on the distance 1 from an APN function.
Keywords: vectorial Boolean function, differentially $\delta$-uniform function, APN function.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: G. I. Shushuev, “Vectorial Boolean functions on distance one from APN functions”, Prikl. Diskr. Mat. Suppl., 2014, no. 7, 36–37
Citation in format AMSBIB
\Bibitem{Shu14}
\by G.~I.~Shushuev
\paper Vectorial Boolean functions on distance one from APN functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2014
\issue 7
\pages 36--37
\mathnet{http://mi.mathnet.ru/pdma181}
Linking options:
  • https://www.mathnet.ru/eng/pdma181
  • https://www.mathnet.ru/eng/pdma/y2014/i7/p36
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024