Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2014, Issue 7, Pages 78–80 (Mi pdma173)  

Mathematical Methods of Steganography

Quantitative steganalysis using binary classifier

E. V. Razinkov, A. N. Almeev

Institute of Computer Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan
References:
Abstract: In this paper, the problem of determining secret message length using binary steganalytic classifier is researched. It is assumed that a steganalyst is able to cut a large stego image into $k$ smaller images and to apply the binary classification to every one of them. According to the information-theoretic approach to the steganographic security, a steganalyst's expected error calculation formula is derived. Determining the optimal choice of $k$ depended on the properties of a binary classifier and a given image is formulated as a minimization problem. Presented approach can be used to estimate impact of various parameters on stegosystem security against quantitative steganalysis.
Keywords: quantitative steganalysis, binary classification.
Document Type: Article
UDC: 621.391.037.372
Language: Russian
Citation: E. V. Razinkov, A. N. Almeev, “Quantitative steganalysis using binary classifier”, Prikl. Diskr. Mat. Suppl., 2014, no. 7, 78–80
Citation in format AMSBIB
\Bibitem{RazAlm14}
\by E.~V.~Razinkov, A.~N.~Almeev
\paper Quantitative steganalysis using binary classifier
\jour Prikl. Diskr. Mat. Suppl.
\yr 2014
\issue 7
\pages 78--80
\mathnet{http://mi.mathnet.ru/pdma173}
Linking options:
  • https://www.mathnet.ru/eng/pdma173
  • https://www.mathnet.ru/eng/pdma/y2014/i7/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :67
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024