Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2014, Issue 7, Pages 19–22 (Mi pdma151)  

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Foundations of Applied Discrete Mathematics

Research of differentiable modulo $p^n$ functions

A. S. Ivachev

Tomsk State University, Tomsk
Full-text PDF (602 kB) Citations (1)
References:
Abstract: For the class $D_n$ of differentiable modulo $p^n$ functions, subsets $A_n$, $B_n$, $C_n$ are defined so that every function $f$ in $D_n$ is uniquely represented by the sum of certain functions $f_A\in A_n$, $f_B\in B_n$, $f_C\in C_n$. The numbers of functions, of bijective functions and of transitive functions in $D_n$ are found via this representation. According to these cardinality relations, the set of transitive differentiable modulo $p^2$ functions coincide with the set of transitive polynomial functions, but this ceases to be true with increasing the degree of the modulo. It is shown that a function $f$ in $D_n$ is invertible if and only if $f$ is invertible modulo $p$ and the derivatives of $f$ are not equal 0 modulo $p^i$, $i=2,\dots,n$. A recurrent formula is presented for finding inverse differentiable modulo $p^n$ function for a bijective function in $D_n$. A transitivity condition is obtained for a differentiable modulo $p^n$ function. It is shown that any transitive function $f$ in $D_n$ may be constructed from a function $\hat f$ in $D_{n-1}$ such that $f=\hat f\pmod{p^{n-1}}$.
Keywords: recurrent sequence, differentiable modulo function, inverse function, bijective function, transitive function.
Document Type: Article
UDC: 512.552.18
Language: Russian
Citation: A. S. Ivachev, “Research of differentiable modulo $p^n$ functions”, Prikl. Diskr. Mat. Suppl., 2014, no. 7, 19–22
Citation in format AMSBIB
\Bibitem{Iva14}
\by A.~S.~Ivachev
\paper Research of differentiable modulo $p^n$ functions
\jour Prikl. Diskr. Mat. Suppl.
\yr 2014
\issue 7
\pages 19--22
\mathnet{http://mi.mathnet.ru/pdma151}
Linking options:
  • https://www.mathnet.ru/eng/pdma151
  • https://www.mathnet.ru/eng/pdma/y2014/i7/p19
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :77
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024