Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2014, Issue 7, Pages 64–67 (Mi pdma143)  

Pseudorandom Generators

Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring

D. M. Ermilov

Moscow
References:
Abstract: There are no polynomials with full cycle over the Galois ring. The maximal length of cycle of polynomial mapping over the Galois ring equals $q(q-1)p^{n-2},$ where $q^n$ – cardinality of ring and $p^n$ – its characteristic. In this work, an algorithm is presented for constructing the system of representatives of all maximal length cycles of a polynomial substitution over the Galois ring. Let an elementary operation be the production in the Galois ring, then the complexity of the algorithm equals $\mathrm O(lq^{n-1})$ elementary operations as $n$ tends to infinity, where $l$ is the degree of the polynomial.
Keywords: nonlinear recurrent sequences, Galois ring.
Document Type: Article
UDC: 512.62
Language: Russian
Citation: D. M. Ermilov, “Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring”, Prikl. Diskr. Mat. Suppl., 2014, no. 7, 64–67
Citation in format AMSBIB
\Bibitem{Erm14}
\by D.~M.~Ermilov
\paper Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring
\jour Prikl. Diskr. Mat. Suppl.
\yr 2014
\issue 7
\pages 64--67
\mathnet{http://mi.mathnet.ru/pdma143}
Linking options:
  • https://www.mathnet.ru/eng/pdma143
  • https://www.mathnet.ru/eng/pdma/y2014/i7/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :69
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024