Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2014, Issue 7, Pages 31–32 (Mi pdma138)  

Theoretical Foundations of Applied Discrete Mathematics

Number of discrete functions on a primary cyclic group with a given nonlinearity degree

A. V. Cheremushkin

Institute of Cryptography, Communications and Informatics, Moscow
References:
Abstract: Let $F$ be a function $F\colon G^m\to G$ on a cyclic group $G$ of order $p^n$, and $\Delta_aF(x)=F(x+a)-F(x)$, $x\in G^m$. The nonlinearity degree $\operatorname{dl}F$ is the minimal number $t$ such that $\Delta_{a_1}\dots\Delta_{a_{t+1}}F(x)=0$ for all $a_1,\dots,a_{t+1},x\in G^m$. A method is proposed for computing $\operatorname{dl}F$ on the basis of the Newton expansion for $F$. Theorem 1 presents the value of nonlinearity degree for all basic functions $F_i(x)={x\choose i}\bmod p^n$, $1\le i\le p^n-1$, namely: $\operatorname{dl}F_i=i+(t-1)(p-1)p^{n-1}+p^n-p^t$, if $p^t\le i\le p^{t+1}-1$, $1\le t\le n-1$, and $\operatorname{dl}F_i=i$ otherwise. As a consequence, the number of functions with small ($0\le\operatorname{dl}F\le p-1$) or almost maximal ($\max-p+1\le\operatorname{dl}F\le\max$) nonlinearity degree is obtained. Theorems 2 and 3 give the number of functions with any prescribed nonlinearity degree for cyclic groups of order $p^2$ and $p^3$.
Keywords: discrete functions, nonlinearity degree.
Document Type: Article
UDC: 519.719.325
Language: Russian
Citation: A. V. Cheremushkin, “Number of discrete functions on a primary cyclic group with a given nonlinearity degree”, Prikl. Diskr. Mat. Suppl., 2014, no. 7, 31–32
Citation in format AMSBIB
\Bibitem{Che14}
\by A.~V.~Cheremushkin
\paper Number of discrete functions on a~primary cyclic group with a~given nonlinearity degree
\jour Prikl. Diskr. Mat. Suppl.
\yr 2014
\issue 7
\pages 31--32
\mathnet{http://mi.mathnet.ru/pdma138}
Linking options:
  • https://www.mathnet.ru/eng/pdma138
  • https://www.mathnet.ru/eng/pdma/y2014/i7/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :79
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024