Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2014, Issue 7, Pages 42–43 (Mi pdma132)  

Mathematical Methods of Cryptography

About primitiveness of self-decimated generator's mixing matrices

Y. E. Avezovaa, V. M. Fomichevba

a National Engineering Physics Institute "MEPhI", Moscow
b Financial University under the Government of the Russian Federation, Moscow
References:
Abstract: Primitiveness conditions are obtained for mixing matrix of a $(\delta,\tau)$-self-decimated generator and its generalization constructed on the basis of non-linear substitutions of a vector space over a finite field. Some upper estimates for exponents of mixing matrices are given.
Keywords: self-decimated generator, primitive graph, primitive matrix, exponent of matrix.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: Y. E. Avezova, V. M. Fomichev, “About primitiveness of self-decimated generator's mixing matrices”, Prikl. Diskr. Mat. Suppl., 2014, no. 7, 42–43
Citation in format AMSBIB
\Bibitem{AveFom14}
\by Y.~E.~Avezova, V.~M.~Fomichev
\paper About primitiveness of self-decimated generator's mixing matrices
\jour Prikl. Diskr. Mat. Suppl.
\yr 2014
\issue 7
\pages 42--43
\mathnet{http://mi.mathnet.ru/pdma132}
Linking options:
  • https://www.mathnet.ru/eng/pdma132
  • https://www.mathnet.ru/eng/pdma/y2014/i7/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024