|
Prikladnaya Diskretnaya Matematika. Supplement, 2013, Issue 6, Pages 116–118
(Mi pdma125)
|
|
|
|
Computational methods in discrete mathematics
On solving big systems of congruences
K. D. Zhukov, A. S. Rybakov Moscow
Abstract:
Let $S$ be a finite set of positive integers such that almost all its elements are pairwise coprime. An algorithm is presented for finding all elements $s\in S$, such that $(s,s')>1$ for an element $s'\in S$, $s'\ne s$. The algorithm allows to reduce any system of polynomial congruences to a number of systems with coprime moduli.
Keywords:
coprime base, gcd, merge gcd, gcd tree.
Citation:
K. D. Zhukov, A. S. Rybakov, “On solving big systems of congruences”, Prikl. Diskr. Mat. Suppl., 2013, no. 6, 116–118
Linking options:
https://www.mathnet.ru/eng/pdma125 https://www.mathnet.ru/eng/pdma/y2013/i6/p116
|
Statistics & downloads: |
Abstract page: | 149 | Full-text PDF : | 82 | References: | 40 |
|