Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2009, supplement № 1, Pages 84–87 (Mi pdm90)  

Computational Methods in Discrete Mathematics

Experimental program estimation for the quantity of prime numbers necessary for elimination of polynomial equations without integer roots

Yu. L. Zachesov, N. P. Salikhov
References:
Abstract: This work deals with a way of eliminating polynomial equations in a single unknown without integer roots with their right parts' known spectrum determined by estimation based on the difference between the polynom's maximum and minimum values in a certain interval. Ideas introduced by Gauss and developed to the case of any prime numbers and any residues were used to elaborate this method. The solutions of congruence in a single variable which demonstrate the elimination method potential are also given. A program in the packet of symbolic calculations is offered for the experimental estimation of the necessary length of the prime numbers list used for equation elimination. The use of a shorter list allows to expect the algorithm's time complexity reduction when this elimination is applied.
Document Type: Article
UDC: 519.61
Language: Russian
Citation: Yu. L. Zachesov, N. P. Salikhov, “Experimental program estimation for the quantity of prime numbers necessary for elimination of polynomial equations without integer roots”, Prikl. Diskr. Mat., 2009, supplement № 1, 84–87
Citation in format AMSBIB
\Bibitem{ZacSal09}
\by Yu.~L.~Zachesov, N.~P.~Salikhov
\paper Experimental program estimation for the quantity of prime numbers necessary for elimination of polynomial equations without integer roots
\jour Prikl. Diskr. Mat.
\yr 2009
\pages 84--87
\issueinfo supplement № 1
\mathnet{http://mi.mathnet.ru/pdm90}
Linking options:
  • https://www.mathnet.ru/eng/pdm90
  • https://www.mathnet.ru/eng/pdm/y2009/i10/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :67
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024