Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2024, Number 65, Pages 5–20
DOI: https://doi.org/10.17223/20710410/65/1
(Mi pdm844)
 

Theoretical Backgrounds of Applied Discrete Mathematics

On permutations that break subspaces of specified dimensions

N. A. Kolomeec

Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: We consider the sets $\mathcal{P}_{n}^{k}$ consisting of invertible functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ such that any $U \subseteq \mathbb{F}_2^n$ and its image $F(U)$ are not simultaneously $k$-dimensional affine subspaces of $\mathbb{F}_2^n$, where $3 \leq k \leq n - 1$. We present lower bounds for the cardinalities of all such $\mathcal{P}_{n}^{k}$ and $\mathcal{P}_{n}^{k} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}$ that improve the result of W. E. Clark, X. Hou, and A. Mihailovs, 2007, providing that these sets are not empty. We prove that almost all permutations of $\mathbb{F}_2^n$ belong to $\mathcal{P}_{n}^{4} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}$. Asymptotic lower and upper bounds of $|\mathcal{P}_{n}^{3}|$ up to $o(2^n!)$ are obtained: $o(1) \leq |\mathcal{P}_{n}^{3}|/2^n! - (1 - \rho) \leq \rho^2/2 + o(1)$, where $\rho = 5/224$. They are correct for $|\mathcal{P}_{n}^{3} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}|$ as well. The number of functions from $\mathcal{P}_{n}^{4} \cap \ldots \cap \mathcal{P}_{n}^{n - 1}$ that map exactly one $3$-dimensional affine subspace of $\mathbb{F}_2^n$ to an affine subspace is estimated. The connection between the restrictions of component functions of $F$ and the case when both $U$ and $F(U)$ are affine subspaces of $\mathbb{F}_2^n$ is obtained. The characterization of differentially 4-uniform permutations in the mentioned terms is provided.
Keywords: affine subspaces, asymptotic bounds, nonlinearity, differential uniformity, APN functions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0019
Document Type: Article
UDC: 519.7
Language: Russian
Citation: N. A. Kolomeec, “On permutations that break subspaces of specified dimensions”, Prikl. Diskr. Mat., 2024, no. 65, 5–20
Citation in format AMSBIB
\Bibitem{Kol24}
\by N.~A.~Kolomeec
\paper On permutations that break subspaces of~specified~dimensions
\jour Prikl. Diskr. Mat.
\yr 2024
\issue 65
\pages 5--20
\mathnet{http://mi.mathnet.ru/pdm844}
\crossref{https://doi.org/10.17223/20710410/65/1}
Linking options:
  • https://www.mathnet.ru/eng/pdm844
  • https://www.mathnet.ru/eng/pdm/y2024/i3/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024