Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2024, Number 63, Pages 65–90
DOI: https://doi.org/10.17223/20710410/63/4
(Mi pdm828)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied Coding Theory

Calculation of error-correcting pairs for an algebraic-geometric code

A. A. Kuninetsa, E. S. Malyginab

a Immanuel Kant Baltic Federal University, Kaliningrad, Russia
b HSE, Moscow, Russia
Full-text PDF (719 kB) Citations (1)
References:
Abstract: Error-correcting pairs are calculated explicitly for an arbitrary algebraic-geometric code and its dual code. Such a pair consists of codes that are necessary for an effective decoding algorithm for a given code. The type of pairs depends on the degrees of divisors with which both the original code and one of the codes from error-correcting pair are constructed. So for the algebraic-geometric code $\mathcal{C}_{\mathcal{L}}(D,G)$ of the length $n$ associated with a functional field $F/\mathbb{F}_q$ of genus $g$ the error-correcting pair with number of errors $t=\lfloor (n-\deg(G)-g-1)/{2} \rfloor$ is $(\mathcal{C}_{\mathcal{L}}(D,F), \mathcal{C}_{\mathcal{L}}(D,G+F)^\bot)$ or $(\mathcal{C}_{\mathcal{L}}(D,F)^\bot,\mathcal{C}_{\mathcal{L}}(D,F-G))$. For the dual code $\mathcal{C}_{\mathcal{L}}(D,G)^\bot$ the error-correcting pair with number of errors $t=\lfloor (\deg(G)-3g+1)/{2} \rfloor$ is $(\mathcal{C}_{\mathcal{L}}(D,F),\mathcal{C}_{\mathcal{L}}(D,G-F))$. Considering each component of pair as MDS-code, we obtain additional conditions on the degrees of the divisors $G$ and $F$. In addition, error-correcting pairs are calculated for subfield subcodes $\mathcal{C}_{\mathcal{L}}(D,G)|_{\mathbb{F}_p}$ and $\mathcal{C}_{\mathcal{L}}(D,G)^\perp|_{\mathbb{F}_p}$, where $\mathbb{F}_p$ is a subfield of $\mathbb{F}_q$. The form of a first component in the pair depends on the degrees of the divisors $G$ and $F$ and, in some cases, on the genus $g$.
Keywords: functional field, algebraic-geometric code, error-correcting pair, subfield subcode.
Funding agency Grant number
Russian Science Foundation 22-41-0441
HSE Basic Research Program
Document Type: Article
UDC: 519.725
Language: Russian
Citation: A. A. Kuninets, E. S. Malygina, “Calculation of error-correcting pairs for an algebraic-geometric code”, Prikl. Diskr. Mat., 2024, no. 63, 65–90
Citation in format AMSBIB
\Bibitem{KunMal24}
\by A.~A.~Kuninets, E.~S.~Malygina
\paper Calculation of error-correcting pairs for~an~algebraic-geometric code
\jour Prikl. Diskr. Mat.
\yr 2024
\issue 63
\pages 65--90
\mathnet{http://mi.mathnet.ru/pdm828}
\crossref{https://doi.org/10.17223/20710410/63/4}
Linking options:
  • https://www.mathnet.ru/eng/pdm828
  • https://www.mathnet.ru/eng/pdm/y2024/i1/p65
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024