|
Mathematical Methods of Cryptography
Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO
V. A. Idrisovaa, N. N. Tokarevaa, A. A. Gorodilovaa, I. I. Beterovb, T. A. Bonicha, E. A. Ishchukovac, N. A. Kolomeetsa, A. V. Kutsenkoa, E. S. Malyginad, I. A. Pankratovae, M. A. Pudovkinaf, A. N. Udovenkog a Novosibirsk State University, Novosibirsk, Russia
b Rzhanov Institute of Semiconductor Physics, Novosibirsk, Russia
c Southern Federal University, Taganrog, Russia
d HSE, Moscow, Russia
e Tomsk State University, Tomsk, Russia
f National Research Nuclear University MEPhI, Moscow, Russia
g CryptoExperts, Paris, France
Abstract:
Every year the International Olympiad in Cryptography Non-Stop University CRYPTO (NSUCRYPTO) offers mathematical problems for university and school students and, moreover, for professionals in the area of cryptography and computer science. The main goal of NSUCRYPTO is to draw attention of students and young researchers to modern cryptography and raise awareness about open problems in the field. We present problems of NSUCRYPTO'22 and their solutions. There are 16 problems on the following topics: ciphers, cryptosystems, protocols, e-money and cryptocurrencies, hash functions, matrices, quantum computing, S-boxes, etc. They vary from easy mathematical tasks that could be solved by school students to open problems that deserve separate discussion and study. So, in this paper, we consider several open problems on three-pass protocols, public and private keys pairs, modifications of discrete logarithm problem, cryptographic permutations, and quantum circuits.
Keywords:
cryptography, ciphers, protocols, number theory, S-boxes, quantum circuits, matrices, hash functions, interpolation, cryptocurrencies, postquantum cryptosystems, Olympiad, NSUCRYPTO.
Citation:
V. A. Idrisova, N. N. Tokareva, A. A. Gorodilova, I. I. Beterov, T. A. Bonich, E. A. Ishchukova, N. A. Kolomeets, A. V. Kutsenko, E. S. Malygina, I. A. Pankratova, M. A. Pudovkina, A. N. Udovenko, “Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO”, Prikl. Diskr. Mat., 2023, no. 62, 29–54
Linking options:
https://www.mathnet.ru/eng/pdm819 https://www.mathnet.ru/eng/pdm/y2023/i4/p29
|
|