Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2023, Number 60, Pages 76–84
DOI: https://doi.org/10.17223/20710410/60/6
(Mi pdm803)
 

Applied Graph Theory

On the complexity of graph clustering in the problem with bounded cluster sizes

R. V. Baldzhanovaa, A. V. Ilevb, V. P. Il'evab

a Dostoevsky Omsk State University, Omsk, Russia
b Institute of Mathematics SB RAS, Omsk, Russia
References:
Abstract: In the graph clustering problems, for a given graph $G$, one has to find a nearest cluster graph on the same vertex set. A graph is called cluster graph if all its connected components are complete graphs. The distance between two graphs is equal to the number of non-coincide edges. In the paper, we consider the graph clustering problem with bounded size $s$ of clusters. The clustering complexity of a graph $G$ is the distance from $G$ to a nearest cluster graph. In the case of ${s=2}$, we prove that the clustering complexity of an arbitrary $n$-vertex graph doesn't exceed ${\left\lfloor {(n-1)^2}/{2} \right\rfloor}$ for ${n \geq 2}$. In the case of ${s=3}$, we propose a polynomial time approximation algorithm for solving the graph clustering problem and use this algorithm to prove that clustering complexity of an arbitrary $n$-vertex graph doesn't exceed ${({n(n-1)}/{2} - 3\left\lfloor {n}/{3}\right\rfloor)}$ for ${n \geq 4}$.
Keywords: graph, clustering, clustering complexity.
Funding agency Grant number
Russian Science Foundation 22-11-20019
Document Type: Article
UDC: 519.1, 519.8
Language: Russian
Citation: R. V. Baldzhanova, A. V. Ilev, V. P. Il'ev, “On the complexity of graph clustering in the problem with bounded cluster sizes”, Prikl. Diskr. Mat., 2023, no. 60, 76–84
Citation in format AMSBIB
\Bibitem{BalIleIle23}
\by R.~V.~Baldzhanova, A.~V.~Ilev, V.~P.~Il'ev
\paper On the complexity of graph clustering in~the~problem~with bounded cluster sizes
\jour Prikl. Diskr. Mat.
\yr 2023
\issue 60
\pages 76--84
\mathnet{http://mi.mathnet.ru/pdm803}
\crossref{https://doi.org/10.17223/20710410/60/6}
Linking options:
  • https://www.mathnet.ru/eng/pdm803
  • https://www.mathnet.ru/eng/pdm/y2023/i2/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :59
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024