Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2023, Number 60, Pages 59–75
DOI: https://doi.org/10.17223/20710410/60/5
(Mi pdm802)
 

Mathematical Methods of Cryptography

On additive differential probabilities of a composition of bitwise XORs

I. A. Sutormina, N. A. Kolomeetsb

a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia
References:
Abstract: We study the additive differential probabilities $\mathrm{adp}_k^{\oplus}$ of compositions of $k - 1$ bitwise XORs. For vectors $\alpha^1, \ldots, \alpha^{k+1} \in \mathbb{Z}_2^n$, it is defined as the probability of transformation input differences $\alpha^1, \ldots, \alpha^k$ to the output difference $\alpha^{k+1}$ by the function $x^1 \oplus \ldots \oplus x^k$, where $x^1, \ldots, x^k \in \mathbb{Z}_2^n$ and $k \geq 2$. It is used for differential cryptanalysis of symmetric-key primitives, such as Addition-Rotation-XOR constructions. Several results which are known for $\\mathrm{adp}_2^{\oplus}$ are generalized for $\mathrm{adp}_k^{\oplus}$. Some argument symmetries are proven for $\mathrm{adp}_k^{\oplus}$. Recurrence formulas which allow us to reduce the dimension of the arguments are obtained. All impossible differentials as well as all differentials of $\mathrm{adp}_k^{\oplus}$ with the probability $1$ are found. For even $k$, it is proven that $\max\limits_{\alpha^1, \ldots, \alpha^{k} \in \mathbb{Z}_2^n} \mathrm{adp}_k^{\oplus}(\alpha^1,\dots,\alpha^{k}\to\alpha^{k+1}) = \mathrm{adp}_k^{\oplus}(\alpha^1,\dots,0,\alpha^{k+1}\to\alpha^{k+1})$. Matrices that can be used for efficient calculating $\mathrm{adp}_k^{\oplus}$ are constructed. It is also shown that the cases of even and odd $k$ differ significantly.
Keywords: ARX, XOR, additive differential probabilities, differential cryptanalysis.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF–2022–0018
The work was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF–2022–0018).
Document Type: Article
UDC: 519.7
Language: English
Citation: I. A. Sutormin, N. A. Kolomeets, “On additive differential probabilities of a composition of bitwise XORs”, Prikl. Diskr. Mat., 2023, no. 60, 59–75
Citation in format AMSBIB
\Bibitem{SutKol23}
\by I.~A.~Sutormin, N.~A.~Kolomeets
\paper On additive differential probabilities of a composition of bitwise XORs
\jour Prikl. Diskr. Mat.
\yr 2023
\issue 60
\pages 59--75
\mathnet{http://mi.mathnet.ru/pdm802}
\crossref{https://doi.org/10.17223/20710410/60/5}
Linking options:
  • https://www.mathnet.ru/eng/pdm802
  • https://www.mathnet.ru/eng/pdm/y2023/i2/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024