Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2023, Number 60, Pages 30–39
DOI: https://doi.org/10.17223/20710410/60/3
(Mi pdm800)
 

Theoretical Backgrounds of Applied Discrete Mathematics

The number of occurrences of elements from a given subset on the complication segments of linear recurrence sequences

A. S. Tissin

Certification Research Center, LLC, Moscow, Russia
References:
Abstract: Let $v$ be a sequence constructed by the rule $v(i) = f(u_1(i),\ldots, u_k(i))$, $i \geq 0$, where $u_1,\ldots,u_k$ are linear recurrence sequences over the field $P$ with characteristic polynomial $F(x)$. We study the value $N_l(H,v)$, which is equal to the number of occurrences of elements from the subset $H\subset P$ among the elements $v(0),v(1),\ldots,v(l-1)$. We have obtained non-trivial estimates for the value $N_l(H,v)$ and considered special cases when the set $H$ is a subgroup of the group $P^*$, $H$ is the set of all primitive elements of the field $P$. Results are generalized to the case of $r$-tuples for the value $N_l(H,\vec{s},v) = \left|\{i \in \{0,\ldots, l-1\}: v(i + s_1) \in H, \ldots, v(i + s_r) \in H \}\right|$, where $\vec{s} = \left(s_1,\ldots,s_r\right) $ is a set of non-negative integers.
Keywords: finite fields, filter generators, discrete function curvature, linear recurrence sequences, characters of abelian group.
Document Type: Article
UDC: 519.4
Language: Russian
Citation: A. S. Tissin, “The number of occurrences of elements from a given subset on the complication segments of linear recurrence sequences”, Prikl. Diskr. Mat., 2023, no. 60, 30–39
Citation in format AMSBIB
\Bibitem{Tis23}
\by A.~S.~Tissin
\paper The number of occurrences of elements from~a~given~subset on~the complication segments of~linear~recurrence sequences
\jour Prikl. Diskr. Mat.
\yr 2023
\issue 60
\pages 30--39
\mathnet{http://mi.mathnet.ru/pdm800}
\crossref{https://doi.org/10.17223/20710410/60/3}
Linking options:
  • https://www.mathnet.ru/eng/pdm800
  • https://www.mathnet.ru/eng/pdm/y2023/i2/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :56
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024