Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2023, Number 60, Pages 13–29
DOI: https://doi.org/10.17223/20710410/60/2
(Mi pdm799)
 

Theoretical Backgrounds of Applied Discrete Mathematics

Properties of exponential transformations of finite field

A. A. Gruba

Certification Research Center, Moscow, Russia
References:
Abstract: We consider exponential transformations acting on the set $V_n(p)$ of all vectors of length $n$ over a prime field $P_0 = \text{GF}(p)$ ($p$ is a prime number). For every element $\gamma\in P = \text{GF}(p^n)$ with a minimal polynomial $F(x)$ of degree $n$ over the field $P_0$, consider the mapping $\hat{s} : P \rightarrow P$, where $\hat{s}(0) = 0$ and if $x \neq 0$, then $\hat{s}(x) = \gamma^{\sigma(x)}$, $\sigma : P \rightarrow \{0, 1,\ldots, p^n - 1\}$ is a mapping that matches each element $x\in P$ with the number $\sigma(x) = x_0 + px_1 + \ldots +p^nx_{n-1}$, $\mathbf{x} = (x_0, \ldots , x_{n-1})$ is given by its coordinates in the basis $\mathbf{\alpha}$ of the vector space $P_{P_0}$. Transformation $s = \tau^{-1}\cdot\hat{s}\cdot \varkappa$, where $\tau : P \rightarrow V_n(p)$ matches $x\in P$ to its set of coordinates in the basis $\mathbf{\alpha}$ of $P_{P_0}$ and the mapping $\varkappa : P \rightarrow V_n(p)$ matches $x$ to its set of coordinates in the dual basis $\mathbf{\beta}$ of the basis $\mathbf{\alpha}$, is called an exponential transformation. We prove estimates for the degree of nonlinearity for an exponential transformation $s$: $(p-1)\left(n - \lceil \log_p(n+1) \rceil\right) \leq \deg s \leq n(p-1) - 1$, where $\lceil z \rceil$ is the minimum integer greater or equal to $z$. It is proved that $\deg s = n(p - 1) - 1$ if and only if the system $\gamma/(\gamma - 1), (\gamma/(\gamma-1))^p, \ldots, (\gamma/(\gamma - 1))^{p^{n-1}}$ is a basis of the vector space $P_{P_0}$. We also study some properties of the linear and differential characteristics of the transformation $s$.
Keywords: finite fields, linear recurrence, difference characteristic, linear characteristic.
Document Type: Article
UDC: 511.321 + 519.111.1
Language: Russian
Citation: A. A. Gruba, “Properties of exponential transformations of finite field”, Prikl. Diskr. Mat., 2023, no. 60, 13–29
Citation in format AMSBIB
\Bibitem{Gru23}
\by A.~A.~Gruba
\paper Properties of exponential transformations of~finite~field
\jour Prikl. Diskr. Mat.
\yr 2023
\issue 60
\pages 13--29
\mathnet{http://mi.mathnet.ru/pdm799}
\crossref{https://doi.org/10.17223/20710410/60/2}
Linking options:
  • https://www.mathnet.ru/eng/pdm799
  • https://www.mathnet.ru/eng/pdm/y2023/i2/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :95
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024