Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2023, Number 60, Pages 5–12
DOI: https://doi.org/10.17223/20710410/60/1
(Mi pdm798)
 

Theoretical Backgrounds of Applied Discrete Mathematics

Characterization of APN-permutations in terms of Hamming distance between subgroups of symmetric group

A. R. Belov

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
References:
Abstract: In the paper, we give a characterization of APN-permutations in terms of the Hamming distance between subgroups of the symmetric group. Let
$$T = \{ \tau_\alpha \in S(\mathbb{F}_{2^n}): \alpha \in \mathbb{F}_{2^n} \& \forall x \in \mathbb{F}_{2^n} (\tau_\alpha(x) = x + \alpha)\}.$$
Then permutation $\pi \in S(\mathbb{F}_{2^n})$ is APN if and only if $\text{d}(T, T') = 2^n-2$, where $T' = \pi^{-1} \cdot T \cdot \pi$ and $\text{d}(T, T')$ is the Hamming distance between subgroups $T, T' \leq S(\mathbb{F}_{2^n})$. Using this characterization, a new approach to the construction of APN-permutations is proposed: the problem of constructing an APN-permutation is reduced to finding a suitable group $T'$ and solving the simultaneous conjugation problem $T = x^{-1} \cdot T' \cdot x$. To find suitable groups $T'$, a combinatorial approach is used, which consists in constructing some graph $G(T)$ associated with the group $T$ and searching in that graph for a maximum independent sets. Let $T' = \langle\tau_1, \tau_2, \ldots, \tau_n\rangle$. Then $\text{d}(\langle\tau_i\rangle, T) = 2^n-2$ if and only if a set of transpositions in decomposition of $\tau_i$ is a maximum independent set in $G(T)$. We have listed all maximum independent sets in the graph $G(T)$ associated with the translation group $T$ of the field $\mathbb{F}_{2^4}$. In this case the group $T'$ cannot be constructed. Thus we have obtained the well-known result about the non-existence of APN permutations in $\mathbb{F}_{2^4}$. APN-permutations in the field $\mathbb{F}_{2^3}$ are classified by listing all possible candidates for the group $T'$: there are 8 possible groups.
Keywords: APN mapping, permutation, symmetric group, Hamming distance, simultaneous conjugacy.
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. R. Belov, “Characterization of APN-permutations in terms of Hamming distance between subgroups of symmetric group”, Prikl. Diskr. Mat., 2023, no. 60, 5–12
Citation in format AMSBIB
\Bibitem{Bel23}
\by A.~R.~Belov
\paper Characterization of APN-permutations in terms of~Hamming distance between subgroups of~symmetric~group
\jour Prikl. Diskr. Mat.
\yr 2023
\issue 60
\pages 5--12
\mathnet{http://mi.mathnet.ru/pdm798}
\crossref{https://doi.org/10.17223/20710410/60/1}
Linking options:
  • https://www.mathnet.ru/eng/pdm798
  • https://www.mathnet.ru/eng/pdm/y2023/i2/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024