Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 58, Pages 57–68
DOI: https://doi.org/10.17223/20710410/58/6
(Mi pdm785)
 

Mathematical Methods of Cryptography

The method for constructing uniform planar approximations of the filter generator

L. A. Kuschinskaya

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We study the possibility of constructing an approximation of filter generator to restore initial state $u^* \in V_n$ from its output sequence $z_i=f(A^i(u^*)) \in \{0,1\}$, $i=0,\ldots,N-1$, where $A:V_n\to V_n$ is non-degenerate linear mapping, $f$ is balanced Boolean function. The triple $(m, L_0, \mathbb T )$ is a key element in the construction of the approximation, where $m \in \mathbb{N}$, $L_0$ is coset of the space $V_n$, $\mathbb T = ( t_0, t_1, \ldots, t_m )$, $t_0 = 0$, $t_0 \leqslant t_1 < \ldots < t_m $. Let $(m, L_0, \mathbb T )$ be a triple and for $b_1, \ldots, b_m\in \{0, 1\}$ the probability that $f(v) {=} b_i$ is greater than $1/2$ for a random equiprobable choice of a vector $v$ from $L_i = A^{ t_i - t_{i-1}}(L_{i-1})$, $i = 1, \ldots, m$. Then a finite number of such triples with pairwise distinct sets $L_0$ makes it possible to restore the key with a complexity that is much less than the complexity of enumerating keys in some cases. In this paper, we study the possibility of constructing approximations of a special form, where all cosets $L_0$ have the same dimension, their union is equal to $V_n$, and the values of $m$ are the same for all described triples. Expressions for the optimal values of the parameters $k$ and $\delta$ are obtained for some enumeration method for constructing the approximations. It is shown that for $k = \left \lceil \log_2 \left ((Q-\sqrt{Q^2-\pi_0 2^{n+2}})/{2\pi_0} \right ) \right \rceil$ and $\delta \approx \lceil t_0 \sqrt \Omega \rceil$ it is possible to achieve the minimum length of the generator output sequence required to construct such approximations for a given value of the upper complexity $Q$ and lower reliability $\pi_0$ of the initial state recovery method, where $ \Omega = 2^k$, $t_0 \approx 1{.}19061 $.
Keywords: cryptanalysis, key recovery, filter generator, planar approximation.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: L. A. Kuschinskaya, “The method for constructing uniform planar approximations of the filter generator”, Prikl. Diskr. Mat., 2022, no. 58, 57–68
Citation in format AMSBIB
\Bibitem{Kus22}
\by L.~A.~Kuschinskaya
\paper The method for constructing uniform planar approximations of the filter generator
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 58
\pages 57--68
\mathnet{http://mi.mathnet.ru/pdm785}
\crossref{https://doi.org/10.17223/20710410/58/6}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4542118}
Linking options:
  • https://www.mathnet.ru/eng/pdm785
  • https://www.mathnet.ru/eng/pdm/y2022/i4/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :28
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024