Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 58, Pages 5–14
DOI: https://doi.org/10.17223/20710410/58/1
(Mi pdm780)
 

Theoretical Backgrounds of Applied Discrete Mathematics

Analysis of minimal distance of AG-code associated with maximal curve of genus three

E. S. Malygina, A. A. Kuninets

Immanuel Kant Baltic Federal University, Kaliningrad, Russia
References:
Abstract: We consider a class of algebraic geometry codes associated with a maximal curve of genus three whose number of rational points satisfies the upper Hasse — Weil — Serre bound. It is proved that the number of rational points of such curve is odd and has a classification: the first type includes $4$-tuples of conjugate points of multiplicity $1$, the second type includes couples conjugate points of multiplicity $2$, and the third type includes a single point of multiplicity $4$. It is found out for which types of points the divisor of the functional field of the desired curve and consisting of these points is the principle. We consider special cases when $\mathrm{deg}\,(G)=2,4$, and establish the form of a divisor $D$ when AG-code $\mathcal{C}_{\mathscr{L}}(D,G)$ associated with the divisors $D$ and $G$ is MDS-code. It is shown that the AG-code $\mathcal{C}_{\mathscr{L}}(D,G)$ is not an MDS-code if the divisor $D - G$ is principle and $\mathrm{deg}\,(G) \geq 5$. Also, it is proved that $\mathcal{C}_{\mathscr{L}}(D,G)$ is an MDS-code if the divisor $D$ consists only of the first type points of curve conjugated to each other for $\mathrm{deg}\,(D) \geq 8$ and $G=\dfrac{\mathrm{deg}\,(D)+2}{2}P_\infty$. Finally, it is shown that the dual equivalent code $\mathcal{C}_{\mathscr{L}}(D,H)^\perp$ to the code $\mathcal{C}_{\mathscr{L}}(D,G)$, which is not MDS, will also not be MDS with conditions $\mathrm{deg}\,(D)-\alpha < \mathrm{deg}\,(H) < \mathrm{deg}\,(D)$, $4 < \mathrm{deg}\,(G) < \alpha+4$, $5<\alpha<\mathrm{deg}\,(D)-5$, and $D$ consists only of conjugate points of the first type.
Keywords: algebraic geometry code, minimal distance, mds-code, maximal curves, function field, divisor.
Funding agency Grant number
Russian Science Foundation 22-41-0441
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: E. S. Malygina, A. A. Kuninets, “Analysis of minimal distance of AG-code associated with maximal curve of genus three”, Prikl. Diskr. Mat., 2022, no. 58, 5–14
Citation in format AMSBIB
\Bibitem{MalKun22}
\by E.~S.~Malygina, A.~A.~Kuninets
\paper Analysis of minimal distance of AG-code associated~with~maximal curve of genus three
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 58
\pages 5--14
\mathnet{http://mi.mathnet.ru/pdm780}
\crossref{https://doi.org/10.17223/20710410/58/1}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4542113}
Linking options:
  • https://www.mathnet.ru/eng/pdm780
  • https://www.mathnet.ru/eng/pdm/y2022/i4/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :50
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024