Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 57, Pages 52–66
DOI: https://doi.org/10.17223/20710410/57/4
(Mi pdm776)
 

Mathematical Methods of Cryptography

Flaws of hypercube-like ciphers

D. I. Trifonov

Academy of Cryptograhy of Russian Federation, Moscow, Russia
References:
Abstract: A class of block XSLP cryptographic algorithms called “hypercube” is considered. These algorithms have a block size ${n=n' \cdot m = n' \cdot m' \cdot k}$ bits. A hypercube-like algorithm is an iterative block algorithm consisted of four main operations: (1) key addition (by XOR), (2) $n'$-bit S-box application, (3) block-diagonal diffusion matrix $\mathrm{diag}\,(A_1,\ldots,A_k)$, $A_i \in \text{GF}(2)_{n'm',n'm'}$, multiplication with diffusion degree $\rho$, and (4) permutation. The main results are the following: 1) the idea of constructing linear correlations and probabilities of distribution of differences, determined by hypercube-like algorithms, has been described; 2) the linear environment propagation index for any number of rounds has been evaluated; 3) the relevance of branch number $\theta(r)$ for differential trails probability and correlation of linear trails for any $r \in \mathbb{N}$, $r\geq 2$, rounds has been formally represented; 4) for hypercube-like algorithms, it is shown that when constructing a $\mathrm{P}$-transform using de Bruijn graphs, the avalanche effect may not occur, which means that the (time) complexity of determining the encryption key will be much less than the exhaustive key search (time) complexity. Let $n=n' (m')^d$ and $\mathrm{P}:V_n \to V_n$ affect $a=(a_0, \ldots, a_{m-1}) \in V_{n}$, $a_i \in V_{n'}$, as follows. Numbers $l \in \{ 0, \ldots, (m')^d-1 \}$ of $a_l \in V_{n'}$ in $a \in V_n$ are considered as $l= j_0 + j_1 m' + \ldots + j_{d-1} (m')^{d-1}$, $j_t = 0,\ldots,m'-1$, $t=0,\ldots,d-1$. Let the mapping $\mathrm{P}$ is defined as $\mathrm{P}(a)=\mathrm{P}(a_0, \ldots, a_{(m')^d-1})= (a_{\tau(0)}, \ldots, a_{\tau((m')^d-1)}),$ $\tau \in S_{(m')^d}$, $\tau(l)= \tau(j_0,\ldots,j_{d-1})$, $l=1,\ldots,(m')^d$. In the case $d=3$ it is obtained that if $\mathrm{P}$ is rotation of hypercube, i.e., $\tau(j_0,j_{1},j_2)= (j_1,j_2,j_0)$, then $\theta(r) \leq t(r)$, $t(1) = m'$, $ t(r) = ((m')^2 + m') \left[ {r}/{2} \right] + m' (r \bmod{2}), $ $r\geq2$. In the case $\tau(i_0,i_1,i_2)= (i_0, i_1+i_0\bmod{m'},i_2+i_0\bmod{m'}) $ we obtain $\theta(r) = \theta(r-4) + \rho^2$, $\theta(1) = 1$, $\theta(2) = \rho$, $\theta(3) = 2\rho -1$, $r\in \mathbb{N}$, $r>4$.
Keywords: XSLP-ciphers, cryptoanalysis, linear method, branch numbers, hypercube structure.
Document Type: Article
UDC: 519.719.2+512.542.74
Language: Russian
Citation: D. I. Trifonov, “Flaws of hypercube-like ciphers”, Prikl. Diskr. Mat., 2022, no. 57, 52–66
Citation in format AMSBIB
\Bibitem{Tri22}
\by D.~I.~Trifonov
\paper Flaws of hypercube-like ciphers
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 57
\pages 52--66
\mathnet{http://mi.mathnet.ru/pdm776}
\crossref{https://doi.org/10.17223/20710410/57/4}
Linking options:
  • https://www.mathnet.ru/eng/pdm776
  • https://www.mathnet.ru/eng/pdm/y2022/i3/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :49
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024