Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 56, Pages 28–32
DOI: https://doi.org/10.17223/20710410/56/3
(Mi pdm768)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theoretical Backgrounds of Applied Discrete Mathematics

Superpositions of free Fox derivations

V. A. Roman'kovab

a Dostoevsky Omsk State University, Omsk, Russia
b Siberian Federal University, Krasnoyarsk, Russia
Full-text PDF (672 kB) Citations (1)
References:
Abstract: Fox derivations are an effective tool for studying free groups and their group rings. Let $F_r$ be a free group of finite rank $r$ with basis $\{f_1, \ldots, f_r\}.$ For every $i$, the partial Fox derivations $\partial /\partial f_i$ and $\partial /\partial f_i^{-1}$ are defined on the group ring $\mathbb{Z}[F_r]$. For $k\geq 2$, their superpositions $D_{f_i^{\epsilon}} = \partial /\partial f_i^{\epsilon_k} \circ \ldots \circ \partial /\partial f_i^{\epsilon_1}, \epsilon = (\epsilon_1, \ldots , \epsilon_k) \in \{\pm 1\}^k,$ are not Fox derivations. In this paper, we study the properties of superpositions $D_{f_i^{\epsilon}}$. It is shown that the restrictions of such superpositions to the commutant $F_r'$ are Fox derivations. As an application of the obtained results, it is established that for any rational subset $R$ of $F_r'$ and any $i$ there are parameters $k$ and $\epsilon$ such that $R$ is annihilated by $D_{f_i^{\epsilon}}$.
Keywords: free group, group ring, Fox derivations, annihilators, rational subsets.
Funding agency Grant number
Russian Science Foundation 19-71-10017
The research was supported by the grant from the Russian Science Foundation (project no. 19-71-10017).
Document Type: Article
UDC: 512.54
Language: English
Citation: V. A. Roman'kov, “Superpositions of free Fox derivations”, Prikl. Diskr. Mat., 2022, no. 56, 28–32
Citation in format AMSBIB
\Bibitem{Rom22}
\by V.~A.~Roman'kov
\paper Superpositions of free Fox derivations
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 56
\pages 28--32
\mathnet{http://mi.mathnet.ru/pdm768}
\crossref{https://doi.org/10.17223/20710410/56/3}
Linking options:
  • https://www.mathnet.ru/eng/pdm768
  • https://www.mathnet.ru/eng/pdm/y2022/i2/p28
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :45
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024