Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 56, Pages 5–16
DOI: https://doi.org/10.17223/20710410/56/1
(Mi pdm766)
 

Theoretical Backgrounds of Applied Discrete Mathematics

Investigation of automorphism group for code associated with optimal curve of genus three

E. S. Malygina

Immanuel Kant Baltic Federal University, Kaliningrad, Russia
References:
Abstract: The main result of this paper is contained in two theorems. In the first theorem, it is proved that the mapping $\lambda: \mathcal{L}(mP_\infty) \rightarrow \mathcal{L}(mP_\infty)$ has the multiplicative property on the corresponding Riemann — Roch space associated with the divisor $mP_\infty$ which defines some algebraic-geometric code if the number of points of degree one in the function field of genus three optimal curve over finite field with a discriminant $\lbrace -19, -43, -67, -163 \rbrace$ has the lower bound $12m/(m-3)$. Using an explicit calculation with the valuations of the pole divisors of the images of the basis functions $x,y,z$ in the function field of the curve via the mapping $\lambda$, we have proved that the automorphism group of the function field of our curve is a subgroup in the automorphism group of the corresponding algebraic-geometric code. In the second theorem, it is proved that if $m \geq 4$ and $n>12m/(m-3)$, then the automorphism group of the function field of our curve is isomorphic to the automorphism group of the algebraic-geometric code associated with divisors $\sum\limits_{i=1}^nP_i$ and $mP_\infty$, where $P_i$ are points of the degree one.
Keywords: optimal curve, algebraic-geometric code, function field, automorphism group of AG-code.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: E. S. Malygina, “Investigation of automorphism group for code associated with optimal curve of genus three”, Prikl. Diskr. Mat., 2022, no. 56, 5–16
Citation in format AMSBIB
\Bibitem{Mal22}
\by E.~S.~Malygina
\paper Investigation of automorphism group for code associated with optimal curve of genus three
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 56
\pages 5--16
\mathnet{http://mi.mathnet.ru/pdm766}
\crossref{https://doi.org/10.17223/20710410/56/1}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4440286}
Linking options:
  • https://www.mathnet.ru/eng/pdm766
  • https://www.mathnet.ru/eng/pdm/y2022/i2/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :37
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024