Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 55, Pages 88–94
DOI: https://doi.org/10.17223/20710410/55/6
(Mi pdm762)
 

This article is cited in 2 scientific papers (total in 2 papers)

Applied Graph Theory

Unique list colorability of the graph $K^n_2+K_r$

L. X. Hung

Hanoi University for Natural Resources and Environment, Hanoi, Vietnam
Full-text PDF (620 kB) Citations (2)
References:
Abstract: Given a list $L(v)$ for each vertex $v$, we say that the graph $G$ is $L$-colorable if there is a proper vertex coloring of $G$, where each vertex $v$ takes its color from $L(v)$. The graph is uniquely $k$-list colorable if there is a list assignment $L$ such that $|L(v)| = k$ for every vertex $v$ and the graph has exactly one $L$-coloring with these lists. If a graph $G$ is not uniquely $k$-list colorable, we also say that $G$ has property $M(k)$. The least integer $k$ such that $G$ has the property $M(k)$ is called the $m$-number of $G$, denoted by $m(G)$. In this paper, we characterize the unique list colorability of the graph $G=K^n_2+K_r$. In particular, we determine the number $m(G)$ of the graph $G=K^n_2+K_r$.
Keywords: vertex coloring, list coloring, uniquely list colorable graph, complete $r$-partite graph.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: English
Citation: L. X. Hung, “Unique list colorability of the graph $K^n_2+K_r$”, Prikl. Diskr. Mat., 2022, no. 55, 88–94
Citation in format AMSBIB
\Bibitem{Hun22}
\by L.~X.~Hung
\paper Unique list colorability of the graph $K^n_2+K_r$
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 55
\pages 88--94
\mathnet{http://mi.mathnet.ru/pdm762}
\crossref{https://doi.org/10.17223/20710410/55/6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000780031400006}
Linking options:
  • https://www.mathnet.ru/eng/pdm762
  • https://www.mathnet.ru/eng/pdm/y2022/i1/p88
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024