Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 55, Pages 77–87
DOI: https://doi.org/10.17223/20710410/55/5
(Mi pdm761)
 

Applied Graph Theory

$\langle 2\rangle$-exponents of shift register transformations nonlinearity dipgraphs

V. M. Fomichevab, V. M. Bobrovc

a Financial University under the Government of the Russian Federation, Moscow, Russia
b Federal Research Center “Computer Science and Control”, RAS, Moscow, Russia
c Moscow Engineering Physics Institute (National Nuclear Research University)
References:
Abstract: The matrix-graph approach is used to estimate sets of essential and non-linear variables of coordinate functions of the vector space transformations product. Estimates are obtained by multiplying binary mixing matrices or digraphs of multiplied transformations in the case of the set of essential variables, or by multiplying ternary nonlinearity matrices or corresponding nonlinearity digraphs with the arcs marked by numbers from the set $\{0, 1, 2\}$. For powers of a given transformation the non-trivial estimates domain is limited by the mixing matrix (digraph) exponent in the case of the essential variables and by the nonlinearity matrix (digraph) $\langle 2\rangle$-exponent in the case of the nonlinear variables. Let $f(x_0,\dots,x_{n-1})$ be the feedback function of shift register, $D=\{d_0,\dots,d_m\}$ be the set of its essential variables (registers extraction points), $1<m\leq n$, $0=d_0<d_1<\ldots<d_m<n$, $E=\{e_0,\dots,e_l\}$ be the set of its nonlinear variables (registers nonlinear extraction points), $1<l\leq n$, $e_0<e_1<\ldots<e_m<n$, and shift register transformation nonlinearity digraph $G$ be $\langle 2\rangle$-primitive. Then $\langle 2\rangle$-exponent of $G$ is not greater than $F(L)+1+n+\Delta_f$, where $F(L)$ is a Frobenius number of the set $L$ of the lengths of all digraph simple circuits, $\Delta_f=\max_{i\in D^0\cup D^1}\mu(i-1)$,
\begin{gather*} \mu(u)= \begin{cases} \min\{u-e(u),u-d(u)+n-e_l\}, & e_0\leq u<n; \\ u-d(u)+n-e_l, & 0\leq u<e_0, \\ \end{cases}\\ D^0=\{d_s\in D, 1\leq s\leq m: d_{s-1}-e(d_{s-1})\leq\lambda, e_0\leq d_{s-1}<n\}\cup S_0(n), \\ D^1=\{d_s\in D, 1\leq s\leq m: 0\leq d_{s-1}<e_0 \text{or} d_{s-1}-e(d_{s-1})>\lambda\}\cup S_1(n), \end{gather*}
where $d(u)$ is the greatest number of $D$ such that $d(u)\leq u$, $0\leq u<n$; $e(u)$ is the greatest number of $E$ such that $e(u)\leq u$, $e_0\leq u<n$; $S_0(n)=S_1(n)=\emptyset$, if $d_m=n-1$; $S_0(n)=\{n\}$, if $d_m<n-1$ and $d_m\in E$; and $S_1(n)=\{n\}$, if $d_m<n-1$ and $d_m\in E$. In the case of the variable $x_{n–1}$ being essential for the function $f(x_0,\ldots,x_{n–1})$, the exact formula for the $\langle 2\rangle$-exponent of the nonlinearity digraph has been derived. Calculation examples are presented. The results can be used to estimate the nonlinearity characteristics of cryptographic functions constructed from iterated register transformations.
Keywords: shift register transformation, nonlinearity digraph, $\langle2\rangle$-primitivity, local $\langle2\rangle$-primitivity, $\langle2\rangle$-exponent of digraph, local $\langle2\rangle$-exponent of digraph.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: V. M. Fomichev, V. M. Bobrov, “$\langle 2\rangle$-exponents of shift register transformations nonlinearity dipgraphs”, Prikl. Diskr. Mat., 2022, no. 55, 77–87
Citation in format AMSBIB
\Bibitem{FomBob22}
\by V.~M.~Fomichev, V.~M.~Bobrov
\paper $\langle 2\rangle$-exponents of shift register transformations nonlinearity dipgraphs
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 55
\pages 77--87
\mathnet{http://mi.mathnet.ru/pdm761}
\crossref{https://doi.org/10.17223/20710410/55/5}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4409564}
Linking options:
  • https://www.mathnet.ru/eng/pdm761
  • https://www.mathnet.ru/eng/pdm/y2022/i1/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024