Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 55, Pages 14–34
DOI: https://doi.org/10.17223/20710410/55/2
(Mi pdm758)
 

Mathematical Methods of Cryptography

Kleptographic (algorithmic) backdoors in the RSA key generator

A. V. Markelova

Science and Technology Center “AlphaProject”, Moscow, Russia
References:
Abstract: A cryptographic (algorithmic) backdoor is the ability of the backdoor key owner to gain an unauthorized access to user's secret information embedded in the cryptoalgorithm. There are two independent classifications of backdoors: by the level of cryptographic strength (weak, symmetric, asymmetric backdoor) and by the method of implementing undeclared capabilities (based on covert channel or on implicit weakening of the cryptoalgorithm). We present examples of each type of backdoor and discuss a method for constructing an asymmetric backdoor based on an implicit weakening of the algorithm in the RSA key generator. Let it be required to generate a public module of the RSA key $n=pq$, $|n|=L$. We will generate such prime numbers that $|p|=|q|={L}/{2}$. Let $D$ be the backdoor parameter, $|D|=K$; $ID$ is the identifier of the generator instance; $i$ is the key generation counter; $\psi_s(a, ID, i)$ is a one-way (trapdoor) function with the trapdoor $s$ on the first argument. Let $(a, D)=1$ and
$$r'(a, D, r_0)= \begin{cases} \min\{r:r\geq r_0; (rD+a) \text{ is prime}\}, &\text{if } r{<} 2^{{L}/{2}-K}\text{ and }rD+a{<}2^{{L}/{2}};\\ 0, &\text{otherwise.} \end{cases}$$
Let's choose the function $R(x, y, z, i)$ and define $r_{ID}^{(i)}(a, D)=r'(a, D, R(a, D, ID, i))$. For any random $a_p\in\mathbb{Z}_D^*$ and $r'_0\in\mathbb{Z}$, $({2^{{L}/{2}-1}})/{D}<r'_0<2^{{L}/{2}-K}$, the following values are uniquely determined:
\begin{gather*} p = r_{ID}^{(i)}(a_p, D)D + a_p,\\ q = r'(\psi_s(a_p, ID, i) a_p^{-1}\bmod D,D,r'_0) D + \psi_s(a_p, ID, i) a_p^{-1}\bmod D. \end{gather*}
At the same time, if $r_{ID}^{(i)}(\cdot)\neq 0$ and $r'(\cdot)\neq 0$, then the numbers $p$ and $q$ are prime, $|p|=|q|={L}/{2}$, $|n|=|pq|\in\{L-1, L\}$. If the numbers $p$ and $q$ are generated in this way, then, provided that the secret $s$ is known, the public module $n=pq$ can be factorized in polynomial time of the key length. Really, $p = r_{ID}^{(i)}(\psi_s^{-1}(n\bmod D, ID, i), D) D + \psi_s^{-1}(n\bmod D, ID, i)$. This approach allows to develop a cryptographically strong key generator, even if the adversary knows the methods used and has access to the source code of the key generator. This allows us to use a backdoor generator even in open source systems. Cryptographic strength depends on the choice of algorithm parameters: in particular, on the level of cryptographic strength of the function $\psi_s(a, ID, i)$.
Keywords: RSA, kleptography, algorithmic backdoor, trapdoor, kleptographic backdoor, backdoor.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. V. Markelova, “Kleptographic (algorithmic) backdoors in the RSA key generator”, Prikl. Diskr. Mat., 2022, no. 55, 14–34
Citation in format AMSBIB
\Bibitem{Mar22}
\by A.~V.~Markelova
\paper Kleptographic (algorithmic) backdoors in~the~RSA~key~generator
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 55
\pages 14--34
\mathnet{http://mi.mathnet.ru/pdm758}
\crossref{https://doi.org/10.17223/20710410/55/2}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4409561}
Linking options:
  • https://www.mathnet.ru/eng/pdm758
  • https://www.mathnet.ru/eng/pdm/y2022/i1/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:567
    Full-text PDF :148
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024