Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 55, Pages 5–13
DOI: https://doi.org/10.17223/20710410/55/1
(Mi pdm757)
 

Theoretical Backgrounds of Applied Discrete Mathematics

Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences

I. V. Statsenko

Moscow Power Engineering Institute, Moscow, Russia
References:
Abstract: In this paper, using numbers of a special kind ${H_{n}^{(r)}= \sum\limits_{m=r}^{n}{\ldots}\sum\limits_{l=3}^{s-1}\sum\limits_{j=2}^{l-1}\sum\limits_{i=1}^{j-1}{\dfrac{1}{ijl\ldots m}}}$, $r,n \in\mathbb{N}$, called multiharmonic numbers, incomplete closed forms of two fundamental sequences of integers given as a recursion are synthesized. The first recursion $u_{k+1}^{(m)}=(k+m)[2u_{k}^{(m)}-(k-1)u_{k-1}^{(m)}]$, ${u_{k}\in\mathbb{Z}}$, ${k\in\mathbb{N}}$, ${m\in\mathbb{Z}^{+}}$, under the conditions ${m=0}$, $u_{0}^{(0)}=u_{1}^{(0)}=1$ is factorial-generating: $u_{k}^{(0)}=k!$. The second recursion defines a sequence of Stirling numbers of the first kind ${s(n,k)}$, ${n,k\in\mathbb{Z}^{+}}$, and by the property ${|s(n,1)|=(n-1)!}$ is also factorial-generating. The resulting closed form for the first recursion is ${u_{k}^{(m)}=\sum\limits_{i=0}^{k-1}{\text{C}_{k-1}^{i}{\text{A}_{k+m-1}^{k-i}{m^{i-1}}}}}$, ${k,m\in\mathbb{N}}$, ${\text{A}_{n}^{m}}={n!}/{(n-m)!}$, ${\text{C}_{n}^{m}}={n!}/{(n-m)!m!}$. The closed form for the second recursion is ${s(n,k)= H_{n-1}^{(k-1)}{(n-1)!}{(-1)^{n+k}}}$, ${k,n\in\mathbb{N}}$. Closed forms are not complete, since they are not used for cases: ${m=k=0}$, ${n=k=0}$.
Keywords: closed forms of recurrent equations with nonlinear coefficients, interpolation of recurrent sequences, generating recursion functions, factorial-generating sequences, hyperharmonic numbers, multiharmonic numbers, Stirling numbers of the first kind.
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: I. V. Statsenko, “Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences”, Prikl. Diskr. Mat., 2022, no. 55, 5–13
Citation in format AMSBIB
\Bibitem{Sta22}
\by I.~V.~Statsenko
\paper Application of multiharmonic numbers for the synthesis of closed forms of parametrically modified factorial generating sequences
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 55
\pages 5--13
\mathnet{http://mi.mathnet.ru/pdm757}
\crossref{https://doi.org/10.17223/20710410/55/1}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4409560}
Linking options:
  • https://www.mathnet.ru/eng/pdm757
  • https://www.mathnet.ru/eng/pdm/y2022/i1/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :57
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024